
research & development

Wi-Fi Implementation Bugs:
an Era of New Vulnerabilities

Laurent BUTTI – Julien TINNES – Franck VEYSSET 
France Télécom R&D / Orange Labs
firstname dot lastname at orange-ftgroup dot com



hack.lu 2007 – p 2 research & development France Telecom Group

WhoAreWe mandatory slide

� Network security experts in R&D labs
� Working for France Telecom – Orange (a major telco)

� Speakers at security-focused conferences
� SSTIC, BlackHat US & Europe, ToorCon, ShmooCon, FIRST, hack.lu …

� Wi-Fi security centric ;-)
� “Wi-Fi Security: What’s Next” – ToorCon 2003
� “Design and Implementation of a Wireless IDS” – ToorCon 2004 and 

ShmooCon 2005
� “Wi-Fi Trickery, or How To Secure (?), Break (??) and Have Fun With Wi-Fi” –

ShmooCon 2006
� “Wi-Fi Advanced Stealth” – BlackHat US 2006 and Hack.LU 2006
� “Wi-Fi Advanced Fuzzing” – BlackHat EU 2007



hack.lu 2007 – p 3 research & development France Telecom Group

Agenda

� Forewords

� Finding 802.11 implementation bugs: 802.11 fuzzing

� Client side implementation bugs
� Details on one of the four client-related vulnerabilities we discovered

� The first “public” Linux-based kernel remote exploitation, due to a 
802.11 driver implementation flaw

� Wireless access point vulnerabilities
� Disclosure of a new vulnerability today



hack.lu 2007 – p 4 research & development France Telecom Group

Goals of This Talk

� Provide the audience with
� A quick overview of current 802.11 fuzzing techniques that 

allowed us to discover several critical implementation bugs
� Some recent research on access point fuzzing with interesting 

findings
� A description of the *first* remote linux-based kernel exploit on 

802.11 that is now integrated in Metasploit
� Some live demos!



research & development

Forewords



hack.lu 2007 – p 6 research & development France Telecom Group

Facts

� Wi-Fi weakens entreprise’s perimetric security
� Weak Wi-Fi network infrastructures (open, WEP, misconfigured WPA)
� Rogue or misconfigured access points (open access points)

� But also weakens client’s security
� Rogue access points in public zones (conferences, hot spots…)
� Fake access points attacking (automagically) clients (KARMA)
� Traffic injection within clients’ communications (AIRPWN, WIFITAP)

� Unfortunately all these issues are hardly detectable
� Without specific tools (Wireless IDS…)

� But wait… There is more to come…



hack.lu 2007 – p 7 research & development France Telecom Group

What We Guessed…

� Implementation bugs in 802.11 drivers
� Developed in C/C++

� Numerous chipsets � Numerous developers � Heterogeneous
implementations regarding security

� Promising implementation bugs!
� Potential arbitrary kernel-mode code execution

• Bypassing all classic security mechanisms: AV, PFW, HIPS…

� Remotely triggerable within the victim’s radio coverage
• Not necessarly been associated to a rogue access point!

� Even if security mechanisms are activated (WPA/WPA2)



hack.lu 2007 – p 8 research & development France Telecom Group

What Happened…

� First public announcement at BlackHat US 2006
� Johnny Cache and David Maynor presentation [DEVICEDRIVERS]

� Month of Kernel Bugs on November, 2006 [MOKB]
� Apple Airport 802.11 Probe Response Kernel Memory Corruption (OS X)
� Broadcom Wireless Driver Probe Response SSID Overflow (Windows)
� D-Link DWL-G132 Wireless Driver Beacon Rates Overflow (Windows)
� NetGear WG111v2 Wireless Driver Long Beacon Overflow (Windows)
� NetGear MA521 Wireless Driver Long Rates Overflow (Windows) (*)
� NetGear WG311v1 Wireless Driver Long SSID Overflow (Windows) (*)
� Apple Airport Extreme Beacon Frame Denial of Service (OS X)

� But also under Linux
� Madwifi stack-based overflow (*)

• Potentially all recent unpatched Linux distributions running on an Atheros chipset

(*) found by our fuzzer



hack.lu 2007 – p 9 research & development France Telecom Group

Potential Targets?

� Nowadays Wi-Fi technologies are ubiquitous!
� All recent laptops

� Most entreprises are equipped with Wi-Fi devices

� More and more home boxes (DSL gateways…)
� More and more cellular phones (VoIPoWLAN)

� Video gaming consoles, digital cameras, printers…

� But also, protection / analyser mechanisms may be vulnerable
� e.g. wireless IDS/IPS, sniffers (tcpdump, wireshark)…

� So many (potentially) vulnerable 802.11 implementations!



hack.lu 2007 – p 10 research & development France Telecom Group

802.11 Station Attack Overview

� 802.11 exploits a.k.a. 0wn3d by a 802.11 frame!

Vulnerable Phone

Vulnerable Laptop

Attacker

Vulnerable PDA

Active Scan
(probe requests)

Active Scan
(probe requests)

Active Scan
(probe requests)

Probe Response (or Beacon)Exploit + Shellcode

Probe Response (or Beacon)

Exploit + Shellcode

Probe Response (or Beacon)
Exploit + Shellcode



hack.lu 2007 – p 11 research & development France Telecom Group

1st Step: Finding These Vulnerabilities!

� Closed source drivers
� Black box testing

� Reverse engineering

� Open source drivers
� Black / White box testing

� Source code auditing

� Reverse engineering drivers is time consuming
� Especially when you haven’t any clue…

� Black box testing may be useful in both cases…



research & development

Fuzzing 101



hack.lu 2007 – p 13 research & development France Telecom Group

Fuzzing? (1/2)

� Really hard to define…
� Security community / industry love this kind of hyped / buzzed words! ;-)

� Some definitions
� Fuzz Testing or Fuzzing is a Black Box software testing technique, which 

basically consists in finding implementation bugs using malformed or semi 
malformed data injection in a automated fashion. [OWASP]

� Fuzz testing or fuzzing is a software testing technique. The basic idea is to 
attach the inputs of a program to a source of random data ("fuzz"). If the 
program fails (for example, by crashing, or by failing built-in code assertions), 
then there are defects to correct. [WIKIPEDIA]

� Common part
� Software testing technique that consists in finding implementation bugs

• 1st definition: with malformed or semi malformed data injection
• 2nd definition: with random data



hack.lu 2007 – p 14 research & development France Telecom Group

Fuzzing? (2/2)

� Fuzzing is by far one of the best price / earning ratio ;-)
� Reverse engineering load of drivers is costly and boring
� Implementing a basic fuzzer may be low cost
� Discovered implementation bugs will thus be the most obvious ones

� But fuzzing will (probably) not help you finding “complex” bugs
� Simply because all testing possibilities cannot be performed due to

• Lack of time versus all test possibilities
• Protocol specificities (states)

� Of course, investigations on exploitation requires reverse 
engineering and/or source code auditing



hack.lu 2007 – p 15 research & development France Telecom Group

Some Fuzzing Successes

� Month of “Whatever” Bugs
� Most vulnerabilities discovered thanks to fuzzing techniques

� Take a look at LMH’s fsfuzzer
� Really basic but _so_ effective!

� Some open source fuzzers
� SPIKE (Immunity): multi-purpose fuzzer
� PROTOS suite (Oulu University): SIP, SNMP…
� Sulley Fuzzing Framework



research & development

Fuzzing 802.11 Stacks



hack.lu 2007 – p 17 research & development France Telecom Group

802.11 Fuzzing? (1/2)

� 802.11 legacy standard is somewhat complex
� Several frame types (management, data, control)

� Lot of signalling
• Rates, channel, network name, cryptographic capabilities, proprietary

capabilities…

� All this stuff must be parsed by the firmware/driver!

� 802.11 extensions are more and more complex!
� 802.11i for security, 802.11e for QoS…
� 802.11w, 802.11r, 802.11k…

� Complexity++ � Code++ � Bugs++



hack.lu 2007 – p 18 research & development France Telecom Group

802.11 Fuzzing? (2/3)

� 802.11 states are fuzzable
� State 1: initial start, unauthenticated, unassociated (e.g. scanning process)
� State 2: authenticated, unassociated
� State 3: authenticated, associated

Source: IEEE 802.11-1999



hack.lu 2007 – p 19 research & development France Telecom Group

802.11 Fuzzing? (3/3)

� Scanning procedure of 802.11 client stacks can be fuzzed
� Active scanning: send probe requests and listen to probe responses back, 

and do channel hopping

� Passive scanning: listen to beacons and do channel hopping

� Note: drivers may be listening to both beacons and probe responses



hack.lu 2007 – p 20 research & development France Telecom Group

802.11 Overview 101

� MAC frame format

� Frame Control defines upper layer (frame body)



hack.lu 2007 – p 21 research & development France Telecom Group

802.11 Overview 101

� Beacon / Probe Response format



hack.lu 2007 – p 22 research & development France Telecom Group

802.11 Overview 101



hack.lu 2007 – p 23 research & development France Telecom Group

802.11 Overview 101

� Some Information Elements



hack.lu 2007 – p 24 research & development France Telecom Group

Fuzzing Information Elements

� A (good) candidate for 802.11 fuzzing: the Information Element
� Type / Length / Value

� Type is the Element ID (1 byte)

� Length is the total length of the Value payload (1 byte)
� Value is the payload of the Information Element (0-255 bytes)

� Most IEs have a fixed or maximum length
� Take the length within 802.11 frame
� If unproperly checked: possible overflows



hack.lu 2007 – p 25 research & development France Telecom Group

Check This for More Information

� “Wi-Fi Advanced Fuzzing” – Black Hat EU 2007
� https://www.blackhat.com/presentations/bh-europe-

07/Butti/Presentation/bh-eu-07-Butti.pdf



research & development

Discovered Vulnerabilities
(Client Implementations)



hack.lu 2007 – p 27 research & development France Telecom Group

Discovered Vulnerabilties

� NetGear MA521 Wireless Driver Long Rates Overflow (CVE-2006-6059)
� Overflowing Rates Information Element

• This field has generally a maximum length of 8 bytes (implementation dependent)

� NetGear WG311v1 Wireless Driver Long SSID Overflow (CVE-2006-6125)
� Overflowing SSID Information Element

• This field has a maximum length of 32 bytes

� D-Link DWL-G650+ (A1) Wireless Driver Long TIM Overflow (CVE-2007-0993)
� Overflowing TIM Information Element

� Madwifi Driver Remote Buffer Overflow Vulnerability (CVE-2006-6332)
� Overflowing WPA/RSN/WMM/ATH Information Element
� Triggered when SIOCGIWSCAN

• e.g. thanks to iwlist or iwlib.h



research & development

Exploitation



Research & Development Hack.lu 2007 – Wifi Fuzzing

(Unrestricted)
October 19, 2007

Flaw Exploit Shellcode Result

The Madwifi flaw

By using the fuzzer, we get an OOPS

Registers states

Stack state

Backtrace
We almost immediately notice the value of EBP and EIP
The backtrace shows us that we’re in some ioctl() system call

This means process context

But kernel mode!



Research & Development Hack.lu 2007 – Wifi Fuzzing

(Unrestricted)
October 19, 2007

Flaw Exploit Shellcode Result

The flaw

We can quickly conclude to a kernel stack buffer overflow

We can find the vulnerable function by using the backtrace:
(giwscan_cb)

char buf[64 * 2 + 30];

memcpy(buf, se->se_wpa_ie, se->se_wpa_ie[1] + 2);

We control the size in memcpy. Ouch!

It is possible to craft a very malicious 802.11 frame



Research & Development Hack.lu 2007 – Wifi Fuzzing

(Unrestricted)
October 19, 2007

Flaw Exploit Shellcode Result

Consequences

We’ve reported this flaw, with a patch, in december 2006

Madwifi published a new fixed version the following day

Linux distributions could begin to patch update their madwifi drivers

Unfortunately some did’nt react quickly



Research & Development Hack.lu 2007 – Wifi Fuzzing

(Unrestricted)
October 19, 2007

Flaw Exploit Shellcode Result

Exploitation Strategy

Code injection in the address space

Let’s use the 802.11 frame

Our information element in on the kernel stack of the current
process

This is where we will put our shellcode



Research & Development Hack.lu 2007 – Wifi Fuzzing

(Unrestricted)
October 19, 2007

Flaw Exploit Shellcode Result

Exploitation Strategy

Control of the execution flow

It seems natural to overwrite the saved EIP on the stack

With the address of some jmp esp

We can look for it either in user or kernel space

On the Linux 2.6 kernel, it’s easy to find one:

dd if=/proc/self/mem bs=4096 skip=$((0xFFFFE)) count=1
of=vdso.so
Between the end of the elf and the end of the page, we find
a jmp esp
It does’t depend on the kernel or process version



Research & Development Hack.lu 2007 – Wifi Fuzzing

(Unrestricted)
October 19, 2007

Flaw Exploit Shellcode Result

Kernel Stack



Research & Development Hack.lu 2007 – Wifi Fuzzing

(Unrestricted)
October 19, 2007

Flaw Exploit Shellcode Result

The problem of the Kernel-mode shellcode

Let’s try to get back to a known situation

Let’s get back to userland

On top of the kernel stack, we can find the userland stack pointer

We copy a userland shellcode there

We change the value of userland’s EIP

We can now do an iret to return from the syscall

This gives an exploit which does’nt depend on the kernel version

But that kills the 802.11 stack, unfortunately



Research & Development Hack.lu 2007 – Wifi Fuzzing

(Unrestricted)
October 19, 2007

Flaw Exploit Shellcode Result

Save the Wifi

We try to let the kernel resume his execution "normally"

We return to the caller of our caller

We emulate the epilogue of our caller

We restore the registers
We have to unlock a spinlock (ouch!)

Our "userland" shellcode will execute when the system call returns

The 802.11 stack is fine

We could even let the process resume normally in userland!



Research & Development Hack.lu 2007 – Wifi Fuzzing

(Unrestricted)
October 19, 2007

Flaw Exploit Shellcode Result

Result

We wrote a module for Metasploit (using Metasm) exploiting any
Linux machine with an Atheros card scanning for networks

Two different kinds of targets:

A very generic target, that works everywhere, but kills the 802.11
stack

Some more specific targets that will cleanly restore the 802.11
stack

An example would be Ubuntu 6.10

It is perfectly possible to write a multi-target exploit, since we get
arbitrary code execution generically

Our exploit can use any Metasploit payload



Demo



Research & Development Hack.lu 2007 – Wifi Fuzzing

(Unrestricted)
October 19, 2007

Flaw Exploit Shellcode Result

Did it work ?

This was the first remote kernel exploit for Linux

A very reliable exploit

Use PaX!

KERNEXEC against remotes
UDEREF against some of the local exploits

We aim to integrate kernel payloads into Metasploit

For both process and interrupt context



Research & Development Hack.lu 2007 – Wifi Fuzzing

(Unrestricted)
October 19, 2007

Flaw Exploit Shellcode Result

It did’nt work ?

Maybe someone did a DoS

Maybe someone launched another exploit

This is because it’s impossible to protect against this kind of flaw,
even with WPA!



research & development

Fuzzing 802.11 Access Points



hack.lu 2007 – p 2 research & development France Telecom Group

Access Point Wars…



hack.lu 2007 – p 3 research & development France Telecom Group



hack.lu 2007 – p 4 research & development France Telecom Group

Access Points Vulnerabilities?

� Access points are embedded devices relying on wireless 
chipsets

� Remember wireless client implementation flaws…

� Is it possible to discover implementation bugs in access
points? 

� This part will describe 802.11 implementation flaws in 
access points

� Thus only from the wireless side of course!



hack.lu 2007 – p 5 research & development France Telecom Group

So What? A.P. Vulnerabilities?

� Attacks from any unauthenticated malicious users
� From the wireless side even with WPA/WPA2 (with PSK or EAP)
� Another risk for wireless enabled architectures (enterprises…)

� At least denial of service

� Possibly, remote code execution
� MIPS, ARM architectures
� Debugging is harder



hack.lu 2007 – p 6 research & development France Telecom Group

Fuzzing 802.11 Access Points

� Similar to 802.11 client fuzzing

� But better be stateful to be effective
� Wireless client capabilities are parsed by the access point

• During association (association requests)

• Not during active scanning (probe requests)



hack.lu 2007 – p 7 research & development France Telecom Group

Fuzzing 802.11 Access Points

� 802.11 access point stacks will parse lots of 802.11 packets
� Probe requests
� Authentication requests
� Association requests
� Crypted and unencrypted data frames
� Control frames

� Other protocols are used in access points thus could be fuzzed
� WPA/WPA2 key exchanges (handshakes)
� EAP-based authentication

� Stateful fuzzing
� Pass state 1 thanks to a successful authentication request
� Pass state 2 thanks to a successful association request
� If WPA/WPA2

• Pass over state 3 thanks to a successful EAPoL-Key exchange



hack.lu 2007 – p 8 research & development France Telecom Group

Stateful Fuzzing



hack.lu 2007 – p 9 research & development France Telecom Group

Apwifuzz

� Based on Phil’s Scapy (Python)
� For frame forging and injection

� Generates a set of tests for any state to be fuzzed
� Information elements fuzzing, truncated frames…

� Checks the access point configuration
� Open, WEP, WPA/WPA2, PSK/EAP



hack.lu 2007 – p 10 research & development France Telecom Group

Apwifuzz

� Launches all tests sequentially for any states
� Perform state changes verification (successful authentication…)

� Checks if the access point is still alive after a particular 
test

� Perform an “Open” authentication

� If not responsive, stop and wait for the AP to resume
� Printing the test that triggered the bug

� Etc…



hack.lu 2007 – p 11 research & development France Telecom Group

Fuzzing Access Points

� Consequences?
� Reboot

� Freeze: requires a manual reboot (watchdog?)

� Reboot with wireless interface inactive
• No more attacks ☺

� This complexifies the fuzzing process
� Fuzzer will stop on the first bug found

� Quite annoying



hack.lu 2007 – p 12 research & development France Telecom Group

Current Status of 802.11 Access Points 
Vulnerabilities

� Today’s access points vulnerabilities are… quite classic
� Flaws in embedded services (httpd, cgi scripts…)

� AP 802.11 related vulnerabilities found at 
http://cve.mitre.org

� CVE-2007-5448: madwifi xrates element overflow

� CVE-2007-2829: madwifi-based vulnerability on the parsing of data frames 

� CVE-2006-2213: Malformed EAPoL-Key causes hostapd 0.3.7-2 to crash



research & development

Discovered Vulnerabilities
(Access Point Implementations)



hack.lu 2007 – p 14 research & development France Telecom Group

Discovered Vulnerabilties

� Cisco access points (to be detailed)

� Check reserved CVE-2007-5474 and CVE-2007-5475

� And a lot of ongoing investigations



hack.lu 2007 – p 15 research & development France Telecom Group

Example of an Access Point 
Vulnerability
� Timeline

� 1. Authentication
� 2. Association
� 3. Any EAP-based packet with a short advertised length will cause the 

access point to crash/reboot

� The implementation incorrectly assumes that any EAP 
packet has a minimal length of 5 bytes

� This field may be manipulated by a wireless attacker

� Triggered by a malformed EAP-Response Identity
� Needs WPA/WPA2 with EAP authentication enabled



hack.lu 2007 – p 16 research & development France Telecom Group

Stateful Fuzzing



hack.lu 2007 – p 17 research & development France Telecom Group

Example: the Cisco AP Vulnerability

� Impacts
� Denial of service on any vulnerable wireless access point

� Possible remote code execution

� From any *unauthenticated* malicious user

� A good example of “Security vs. Complexity”
� Even robust security mechanisms may induce issues on security

• Implementation bugs!

� Discovered during EAP-based fuzzing of
� A wireless access point and an EAP-based RADIUS server (EAP-TLS)



hack.lu 2007 – p 18 research & development France Telecom Group

Timeline

� Vendor notified: July, 1st 2007
� Vendor acknowledged the notification: July, 1st 2007
� Details of the vulnerability explained with exploit code 

(private release for Cisco): July, 2nd 2007
� Cooperative work on the corrective patch: July, 2007
� Agreement on the disclosure of the vulnerability: 

September, 10th 2007
� Disclosure: October, 19th 2007 – TODAY ☺☺☺☺

� We thank the Cisco PSIRT team for their responsiveness



hack.lu 2007 – p 19 research & development France Telecom Group

Side Effects and Disclosure

� It impacts lots of devices
� Not only wireless access points
� This is an EAP-based vulnerability
� Wired switches with 802.1X/EAP enabled may be vulnerable

� Also other vendors/products may be vulnerable as it is a generic
vulnerability

� Cisco’s official advisory is planned to be published in classic 
mailing lists today

� … check your mails … and patch!



research & development

Investigations on Exploitability



hack.lu 2007 – p 21 research & development France Telecom Group

Investigating APs Vulnerabilities

� We can remotely crash a lot of access points
� We have a fairly good success rate

� We need more information
� Nature and localisation of the flaws

� Exploitability to gain remote control over the access point

� We can write a small DoS exploit to easily trigger the 
vulnerability

� Based on the information given by the fuzzer



hack.lu 2007 – p 22 research & development France Telecom Group

Getting some information

� Open the box, look at the board
� Look at SoC on the main board and determine the architecture

� Look at the Wifi chip (Atheros, Marvell…)

� Google

� Some access points will let you get a shell easily
� Standard, externally accessible serial port

� Telnet server

� Sometimes it can be a trickier
� Internal serial port (need for TTL->RS232 conversion)



hack.lu 2007 – p 23 research & development France Telecom Group

TTL->RS232



hack.lu 2007 – p 24 research & development France Telecom Group

Finding the serial ports

� Using a multimeter
� Find VCC and Ground

� Using an oscilloscope
� Find TX



hack.lu 2007 – p 25 research & development France Telecom Group

Easy version



hack.lu 2007 – p 26 research & development France Telecom Group

Harder version



hack.lu 2007 – p 27 research & development France Telecom Group

Harder version (2)



hack.lu 2007 – p 28 research & development France Telecom Group

Harder version (3)



hack.lu 2007 – p 29 research & development France Telecom Group

Harder version (4)



hack.lu 2007 – p 30 research & development France Telecom Group

Getting a shell

� If you can’t find a serial port or if the serial console prompts 
for a password

� Get a firmware update file
� Usually easy to decipher (mostly simple, non cryptographic 

algorithms, easy to guess)
� Unpack it (squashfs or cramfs for Linux-based devices)

� If that doesn’t work, use JTAG to dump the flash memory
� Once you get the firmware

� Find exploitable bugs (Web server, configuration restoration process)

� Find hidden debug features

� Modify it if you can

� Last resort
� Use the JTAG to patch firmware in flash



hack.lu 2007 – p 31 research & development France Telecom Group

Hidden debug feature in an AP



hack.lu 2007 – p 32 research & development France Telecom Group

Debugging the flaw

� Try to get some kind of backtrace or information
� OOPS() on Linux

� Sometimes you’ll even get symbols

� Demo



research & development

Conclusions 



hack.lu 2007 – p 34 research & development France Telecom Group

Conclusions

� 802.11 extensions are complex thus error-prone

� Even if not exhaustive, 802.11 fuzzing is an effective 
technique

� We found some critical bugs
� Stay tuned for more…

� WPA/WPA2 will not protect your client or infrastructure

� Successful access point exploitation may be available soon!



hack.lu 2007 – p 35 research & development France Telecom Group

Acknowledgements

� Yoann Guillot for metasm
� Raphael Rigo for help on access point investigations
� Benoit Stopin for the development of the EAP fuzzer and 

the discovery of the Cisco access point bug



hack.lu 2007 – p 36 research & development France Telecom Group

May The Force Be With You


