
Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Security In-Depth for Linux Software
Preventing and Mitigating Security Bugs

Julien Tinnes Chris Evans

Google Inc.

October 2009 / HITB Malaysia

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Goals of this Talk

1 How to implement security in depth and
the least privilege principle in your Linux code

2 Explain designs of sandboxing techniques on Linux
3 Good code writing and design practices can work

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

What is Security in Depth?

A secure application should have tolerance for mistakes
A single failure should not completely break the security
model

Today, we will try to address this from a Linux application
programmer perspective
Using Chromium and vsftpd as examples

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Steps to Security in Depth

1 Secure code: reduce number of mistakes
2 Application-level exploitation mitigation (SSP, relro. . .)
3 System-level exploit mitigation (ASLR, NX)
4 Privilege dropping (Sandboxing)
5 Mandatory access control
6 Update strategy

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Steps to Security in Depth

1 Secure code: reduce number of mistakes
2 Application-level exploitation mitigation (SSP, relro. . .)
3 System-level exploit mitigation (ASLR, NX)
4 Privilege dropping (Sandboxing)
5 Mandatory access control
6 Update strategy

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Outline

1 Privileges in Linux
Process and Privileges
Privilege-related Facilities

2 Writing Good Code
Preventing Common Security Flaws
Privilege Separation
Trust Relationships
Update Strategy

3 Sandbox designs
Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Process and Privileges
Privilege-related Facilities

Outline

1 Privileges in Linux
Process and Privileges
Privilege-related Facilities

2 Writing Good Code
Preventing Common Security Flaws
Privilege Separation
Trust Relationships
Update Strategy

3 Sandbox designs
Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Process and Privileges
Privilege-related Facilities

The Privilege Model of Unix
In a Nutshell. . .

Each process has its own address space
MMU enforces separation of address spaces

The kernel is a mandatory interface to the system
The process is the privilege boundary

root has access to everything
other users are subject to discretionary access control

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Process and Privileges
Privilege-related Facilities

Privileges Ordering in the General Case

Definition
Process A has more privileges than process B
if A has access to every resource B has access to

Any process running as root is more privileged
than any other process
Two processes with the same uid and gid
may have the same privilege
One can generally not compare two processes
with different uids

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Process and Privileges
Privilege-related Facilities

Processes and Privilege Separation

Threads
There is no possible privilege separation inside a process
(in the general case)
Exception: NaCl, SECCOMP sandbox

Debugging

If A can ptrace() B, then A is more privileged than B

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Process and Privileges
Privilege-related Facilities

Outline

1 Privileges in Linux
Process and Privileges
Privilege-related Facilities

2 Writing Good Code
Preventing Common Security Flaws
Privilege Separation
Trust Relationships
Update Strategy

3 Sandbox designs
Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Process and Privileges
Privilege-related Facilities

Standard Linux Process Privileges

Users and groups
uid, euid, suid, fsuid

gid, egid, sgid, fsgid and supplementary groups

POSIX.1e capabilities
Designed as a way to split root privileges
Introduced in Linux 2.2

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Process and Privileges
Privilege-related Facilities

uid, effective uid, saved uid and filesystem uid

Definition (Confused Deputy)
A computer program that is innocently fooled to use its ambient
authority

Partial UID switching is mostly useful to avoid
confused deputy problems
It’s useless in case of arbitrary code execution,
where the attacker has full control of the application
Only root can use this facility

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Process and Privileges
Privilege-related Facilities

Linux Capabilities

Linux divides root privileges into distinct units

Examples
CAP_NET_RAW: Permit use of RAW and PACKET sockets
CAP_SYS_ADMIN: Administrative operations
(mount(), sethostname(), etc. . .)
CAP_NET_BIND_SERVICE: Binding to reserved ports
(< 1024)

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Process and Privileges
Privilege-related Facilities

Capabilities Limitation

Common Mistakes
1 Forgetting to switch from uid 0
2 A lot of capabilities are root equivalent

Useful for confused deputy problems

Root only
Capabilities are a root privilege dropping facility
Useless to further restrict a normal user’s privileges

Normal users can do a lot

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Process and Privileges
Privilege-related Facilities

Changing Root

Using chroot()

A popular way to drop filesystem access
How else do you drop access to o+r files?
Only available to root

Requires dropping privileges afterwards, or easy to escape:

Popular re-chroot() technique
Inject modules, ptrace() non chroot-ed process, etc. . .
Look at capabilities for inspirations

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Process and Privileges
Privilege-related Facilities

Changing Root

Using chroot()

A popular way to drop filesystem access
How else do you drop access to o+r files?
Only available to root

Requires dropping privileges afterwards, or easy to escape:

Popular re-chroot() technique
Inject modules, ptrace() non chroot-ed process, etc. . .
Look at capabilities for inspirations

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Process and Privileges
Privilege-related Facilities

New namespaces: CLONE_NEW*
Courtesy of Linux Containers (LXC)

Recent kernels introduced new clone()/unshare() flags

CLONE_NEWPID: new pid namespace (2.6.24)
CLONE_NEWNET: new network namespace (2.6.26)
CLONE_NEWIPC, CLONE_NEWUTS, CLONE_NEWNS
(2.6.19)

Interesting ways to drop privileges, but only accessible by root

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Process and Privileges
Privilege-related Facilities

Resource Limits
rlimits

Resource limits can be used for security
RLIMIT_NOFILE: can’t get new file descriptors.
But can still rename() and unlink()

RLIMIT_NPROC: can’t create new processes

If used for security, soft and hard limit need to be set to
zero
Or attacker could replace an existing fd to create new
sockets/access new files

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Process and Privileges
Privilege-related Facilities

Dumpable (Debuggable) Process

Linux supports a per process dumpable flag

Can be set through prctl with PR_SET_DUMPABLE

Or when executing a file you don’t own and can’t read
Or when switching uid

A process without CAP_SYS_PTRACE cannot ptrace
a non dumpable process
Therefore it’s an elevation of privileges
But it allows to lower another process’ privileges

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Process and Privileges
Privilege-related Facilities

Mandatory Access Control (MAC)

Linux has several MAC options
In the Kernel, LSM-based: SELinux, SMACK, TOMOYO
Outside: GRSecurity, RSBAC, AppArmor (not for long?). . .

Offers some flexibility and lots of options
But, they require the administrator to set-up a policy

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Process and Privileges
Privilege-related Facilities

Conclusion on Privilege-related Facilities

Most of them are designed to give less privileges to root
Those which don’t still require root
Easy to protect against confused deputy problems but not
against arbitrary code execution

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Preventing Common Security Flaws
Privilege Separation
Trust Relationships
Update Strategy

Outline

1 Privileges in Linux
Process and Privileges
Privilege-related Facilities

2 Writing Good Code
Preventing Common Security Flaws
Privilege Separation
Trust Relationships
Update Strategy

3 Sandbox designs
Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Preventing Common Security Flaws
Privilege Separation
Trust Relationships
Update Strategy

Mostly a solved problem...

General principle
Use APIs that are harder to abuse than use correctly

Strings: use a C++-like buffer encapsulation (even in C)
Auth: tiny API, all code in one place
Must be readable

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Preventing Common Security Flaws
Privilege Separation
Trust Relationships
Update Strategy

Easy to Abuse API: OpenSSL

OpenSSL API modeled after UNIX API

i n t SSL_read (SSL ∗ ss l , vo id ∗buf , i n t num) ;

What does it mean if that returned "0" ?

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Preventing Common Security Flaws
Privilege Separation
Trust Relationships
Update Strategy

Hard to Read Code

for (p = old_prompt ,
len = strlen (old_prompt) ;
∗p ; p++) {

if (p [0] ==’%’) {
switch (p [1]) {

case ’h’ :
p++;
len += strlen (user_shost) − 2;
subst = 1;
break ;

new_prompt = (char ∗) emalloc(++len) ;
endp = new_prompt + len ;
for (p = old_prompt ,

np = new_prompt ; ∗p ; p++) {
if (p [0] ==’%’) {

switch (p [1]) {
case ’h’ :

p++;
n = strlcpy (np , user_shost ,

np − endp) ;
if (n >= np − endp)
goto oflow ;

np += n ;
continue ;

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Preventing Common Security Flaws
Privilege Separation
Trust Relationships
Update Strategy

Outline

1 Privileges in Linux
Process and Privileges
Privilege-related Facilities

2 Writing Good Code
Preventing Common Security Flaws
Privilege Separation
Trust Relationships
Update Strategy

3 Sandbox designs
Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Preventing Common Security Flaws
Privilege Separation
Trust Relationships
Update Strategy

The use of Multiple Processes

Use one process per "privilege level"
Use different UIDs
Each process should run with the minimum privilege it
needs
Have a simple message protocol and transport between
processes

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Preventing Common Security Flaws
Privilege Separation
Trust Relationships
Update Strategy

Vsftpd

Pre-vsftpd: anonymous⇒ root

vsftpd scenario
No anonymous access
Logins to real accounts over SSL

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Preventing Common Security Flaws
Privilege Separation
Trust Relationships
Update Strategy

vsftpd: pre-authentication

vsftpd: unauthenticated

user +
password

FTP parsing
SSL handshake

nobody
root

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Preventing Common Security Flaws
Privilege Separation
Trust Relationships
Update Strategy

vsftpd: post-authentication

vsftpd: authenticated

get socket FTP parsing
More SSL handshake
File / network I/O
Lots of FTP commands

change
upload owner chris

nobody
+ caps

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Preventing Common Security Flaws
Privilege Separation
Trust Relationships
Update Strategy

Outline

1 Privileges in Linux
Process and Privileges
Privilege-related Facilities

2 Writing Good Code
Preventing Common Security Flaws
Privilege Separation
Trust Relationships
Update Strategy

3 Sandbox designs
Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Preventing Common Security Flaws
Privilege Separation
Trust Relationships
Update Strategy

The Messages Between Multiple Processes

A higher privileged process must distrust requests from a
lower privileged process
Bad messages could simply be garbled
Or bad messages could be syntactically valid but claim evil
things

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Preventing Common Security Flaws
Privilege Separation
Trust Relationships
Update Strategy

Compromised
FTP process

(user: nobody; chroot: /empty)

Filesystem
access

Process
attach Attack

kernel API

Hack internal
network

Steal / corrupt
IPC segments

Signal / kill
FTP processes

Boring DoS
attacks

Steal private
key

Abuse
privileged
channel

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Preventing Common Security Flaws
Privilege Separation
Trust Relationships
Update Strategy

Compromised
FTP process

(user: nobody; chroot: /empty)

Filesystem
access

Process
attach Attack

kernel API

Hack internal
network

Steal / corrupt
IPC segments

Signal / kill
FTP processes

Boring DoS
attacks

Steal private
key

Abuse
privileged
channel

vsftpd v2.0

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Preventing Common Security Flaws
Privilege Separation
Trust Relationships
Update Strategy

Compromised
FTP process

(user: nobody; chroot: /empty)

Filesystem
access

Process
attach Attack

kernel API

Hack internal
network

Steal / corrupt
IPC segments

Signal / kill
FTP processes

Boring DoS
attacks

Steal private
key

Abuse
privileged
channel

?

vsftpd v2.2 (default)

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Preventing Common Security Flaws
Privilege Separation
Trust Relationships
Update Strategy

More Subtle Trust Examples From Chromium and
vsftpd

Chromium
Uploading local filesystem files to a web site
Causing memory corruption in the privileged browser via
audio-related integer overflows
Renderer crash and extracting a stack trace

vsftpd
Sleeping after failed login

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Preventing Common Security Flaws
Privilege Separation
Trust Relationships
Update Strategy

Outline

1 Privileges in Linux
Process and Privileges
Privilege-related Facilities

2 Writing Good Code
Preventing Common Security Flaws
Privilege Separation
Trust Relationships
Update Strategy

3 Sandbox designs
Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Preventing Common Security Flaws
Privilege Separation
Trust Relationships
Update Strategy

Secure software and patching

Remember!
Any large piece of software will have security bugs

Secure design is an important vulnerability mitigation
Getting fixes to users fast is often overlooked

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

Outline

1 Privileges in Linux
Process and Privileges
Privilege-related Facilities

2 Writing Good Code
Preventing Common Security Flaws
Privilege Separation
Trust Relationships
Update Strategy

3 Sandbox designs
Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

Sandboxing

Sandboxing (in this talk)
The ability to restrict a process’ privileges:

Programmactically
Without administrative authority on the machine
Discretionary privilege dropping

Administrative Authority
Being in charge of administrating the machine (or Linux
distribution)
One still can do sandboxing as a root process

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

Mandatory Access Control vs. Sandboxing

Mandatory Access Control
For administrators and distribution maintainers
One policy to rule over many programs
Without the need for control over the code

Sandboxing

For software developers
One code that works on many machines
Without the need to administer the machines

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

Threat Model of Sandboxing

Here, we assume arbitrary code execution inside the
sandboxed process

The attacker fully controls the sandboxed process
Dropping privileges is useless if it’s revertible

We only care marginally about confused deputy problems

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

Outline

1 Privileges in Linux
Process and Privileges
Privilege-related Facilities

2 Writing Good Code
Preventing Common Security Flaws
Privilege Separation
Trust Relationships
Update Strategy

3 Sandbox designs
Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

Sandbox Designs

There are very few facilities to write sandboxes
in the kernel
Most of the one we’ve presented are only available to root
Adding new facilities to the kernel is not a short term option

We will present three designs, used in vsftpd and Chromium

ptrace() sandbox (vsftpd experiment)
setuid sandbox
SECCOMP sandbox

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

ptrace() Sandboxing

ptrace() sandboxing

supervisedsupervisor

kernel

syscall enter

syscall exit

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

ptrace() Sandboxing: pros

Tightly restricts kernel API, lowers attack surface
High granularity of access control possible
Can be used securely, despite widely-cited race conditions
Code relatively simple (but not trivial)

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

ptrace() Sandboxing: cons

Very buggy area of kernel
Lots of pitfalls
Performance degradation
Highly sensitive to exact kernel and glibc version and
architecture

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

ptrace() Sandboxing: pitfalls

Race conditions: don’t allow threads (or shared memory!)
Or don’t gate access control on pointer-based arguments
SIGKILL vs. the supervisor or the supervisee
64-bit vs. 32-bit syscalls
Desynchronizing the supervisor
Probably best avoided

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

Setuid Sandbox
(Julien Tinnes, Tavis Ormandy)

root seemed hard to avoid
Need to drop access to the filesystem
RLIMIT_NOFILE is not enough (unlink(), rename())
Preventing ptrace() on other processes
Prevent sending signals to other processes

Switching uid and gid would mostly solve this
We designed a setuid sandbox

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

Setuid Sandbox
(Julien Tinnes, Tavis Ormandy)

root seemed hard to avoid
Need to drop access to the filesystem
RLIMIT_NOFILE is not enough (unlink(), rename())
Preventing ptrace() on other processes
Prevent sending signals to other processes

Switching uid and gid would mostly solve this
We designed a setuid sandbox

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

Setuid Sandbox

UID switching

We require an administratively defined pool of UIDs/GIDs
No need for /etc/passwd entries
On invocation, search for unused UID/GID
Switch to them
Execute program to sandbox

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

Setuid Sandbox

How to do this statelessly ?
Choose random UID/GID in the pool
Use RLIMIT_NPROC to make setuid() fail if uid is
already used
If it fails, repeat until pool is exhausted

Preventing a user from exhausting the pool
Ideal: Partition the pool among UIDs
Trade-off: Partition the pool against hashes of UIDs

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

Setuid Sandbox

How to do this statelessly ?
Choose random UID/GID in the pool
Use RLIMIT_NPROC to make setuid() fail if uid is
already used
If it fails, repeat until pool is exhausted

Preventing a user from exhausting the pool
Ideal: Partition the pool among UIDs
Trade-off: Partition the pool against hashes of UIDs

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

The Need for chroot()

Uid switching leaves a lot exposed
/tmp races exploitation
setuid binary execution
(also matters for kernel vulnerabilities exploitation)

Could we also get chroot()-ed ?

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

A Setuid Sandbox, chroot() and execve()

Problem: how do I execve() after I chroot?
1 chroot() to an empty directory
2 drop privileges (switch uid/gid)
3 execve() target

No go

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

A Setuid Sandbox, chroot() and execve()

Problem: how do I execve() after I chroot?
1 chroot() to an empty directory
2 drop privileges (switch uid/gid)
3 execve() target

No go

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

Solving the chroot() Problem

Naive
Give CAP_SYS_CHROOT
That’s giving instant root to anyone

Realistic
Don’t go through execve, drop privileges and mmap() code
Not convenient. And dangerous (hello pulseaudio)

Optimistic
Let’s give a process the privilege to chroot() to an empty
directory
Can we do that?

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

Giving a Process the Ability to Change Root

Sharing the process’ FS structure

Our sandbox (process A) spawns a new process B
We use clone, with CLONE_FS so that A and B
share their root directory, CWD, etc. . .
A drop privileges, B waits for a special message from A
When A wants to chroot(), it send a message
B chroot() to an empty directory, which also affects A

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

CLONE_FS Security Implications

A root process B shares its FS with untrusted process A
That’s very scary
Our deputy is under untrusted process influence
Drugged deputy problem ?

Mitigations (in case something goes wrong)

B can drop capabilities (but CAP_SYS_CHROOT)
And set RLIMIT_NOFILE to 0,0
Dropping capabilities is mostly useful
to make RLIMIT_NOFILE effective

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

CLONE_FS Security Implications

A root process B shares its FS with untrusted process A
That’s very scary
Our deputy is under untrusted process influence
Drugged deputy problem ?

Mitigations (in case something goes wrong)

B can drop capabilities (but CAP_SYS_CHROOT)
And set RLIMIT_NOFILE to 0,0
Dropping capabilities is mostly useful
to make RLIMIT_NOFILE effective

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

Now that we Can Drop Filesystem Access. . .

Can we drop the need for the UID/GID pool range?

Not changing UID and switching to a single, common GID

Would prevent ptrace() from a sandboxed process to
another process
PR_SET_DUMPABLE to prevent ptrace() among
sandboxed process
What about signals?

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

Now that we Can Drop Filesystem Access. . .

Can we drop the need for the UID/GID pool range?

Using a new PID namespace (CLONE_NEWPID) (2.6.24)

Solves many problems
Open question: how secure is it?

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

Dropping Network Access

We can use RLIMIT_NOFILE
What if we require new descriptors (for files)?
We can share our file descriptors (CLONE_FILES) with a
broker process

Using CLONE_NEWNET (2.6.24+)

Can be used to cut access to the network completely

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

Dropping Network Access

We can use RLIMIT_NOFILE
What if we require new descriptors (for files)?
We can share our file descriptors (CLONE_FILES) with a
broker process

Using CLONE_NEWNET (2.6.24+)

Can be used to cut access to the network completely

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

Setuid Sandbox: Conclusion

Chromium has been adapted to work with this sandbox
(the renderer is sandboxed)
We have a fully-featured version and a
Chromium-dedicated version
Chromium’s version uses the CLONE_FS trick and
CLONE_NEWPID
The setuid sandbox is the first-level sandbox in Chromium

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

SECCOMP sandbox
(Markus Gutschke, Adam Langley)

Secure Computing mode
Has been introduced in Linux 2.6.10
A thread under SECCOMP can use limited system calls

read()
write()
exit()
sigreturn()

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

SECCOMP’s limitation

Design

Seccomp was designed with pure computing in mind
The "4 system calls allowed" design is simple

Too limited for a browser renderer
No memory allocations (mmap(), brk())
No ability to get new file descriptors (recvmsg())

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

SECCOMP sandbox design

Trusted thread (TT)
For each thread under seccomp, we have a trusted helper
thread
UT asks TT to perform system calls on its behalf
TT validates and eventually performs them
Even memory allocations will work

Trusted/untrusted code sharing AS ?
The trusted code needs to be in RX only memory
The trusted code can’t access any volatile memory

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

SECCOMP sandbox design

Trusted thread (TT)
For each thread under seccomp, we have a trusted helper
thread
UT asks TT to perform system calls on its behalf
TT validates and eventually performs them
Even memory allocations will work

Trusted/untrusted code sharing AS ?
The trusted code needs to be in RX only memory
The trusted code can’t access any volatile memory

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

SECCOMP Trusted and Untrusted Threads

Thread 2
(seccomp)

Thread 1

Uses RX mappings

syscall
request

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

SECCOMP sandbox difficulties

No volatile memory constraint
The code has to be written in pure assembly
The code can’t use a stack

But we need volatile memory
Many system calls pass pointers to memory (open())
Evaluating complex system calls in pure assembly
would be very hard/impossible

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

SECCOMP sandbox: the trusted process

Something needs access to volatile memory

Complexities can be handled in a separate trusted process
The trusted process can use volatile memory
It shares pages with the trusted thread
And can write to them (the trusted thread can only read)

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

SECCOMP sandbox: conclusion

Has high potential to isolate the kernel
Still work in progress
Has still performance issues
Not yet enabled by default

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

Outline

1 Privileges in Linux
Process and Privileges
Privilege-related Facilities

2 Writing Good Code
Preventing Common Security Flaws
Privilege Separation
Trust Relationships
Update Strategy

3 Sandbox designs
Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

Relying on a MAC

Creating a generic sandbox by relying on a MAC

Possible if you have some control over the policy
Example: SELinux Sandbox

Possible to drop privileges during execution ?

SELinux supports dynamic transitions

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

Privilege dropping facilities in the Linux kernel

We have to juggle, due to the lack of discretionary privilege
dropping facilities

Recent efforts
LSMSB
SELinux type boundaries
ftrace framework ?

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

Virtualisation

Lots of people use virtualisation to separate privileges
By doing that, they are trying to revert to a known problem:
physical machines separation. Of course it’s not the case.
It stil offers the advantage over MAC that it doesn’t expose
the Linux kernel

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

Outline

1 Privileges in Linux
Process and Privileges
Privilege-related Facilities

2 Writing Good Code
Preventing Common Security Flaws
Privilege Separation
Trust Relationships
Update Strategy

3 Sandbox designs
Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

Sandboxes attack surfaces

Different sandboxes expose different attack surfaces
ptrace() / ftrace sandbox
setuid sandbox
SECCOMP sandbox

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

Trusted Path Executable

Can TPE protect the kernel?
TPE usually works by limiting loading native code
through execve() / PROT_EXEC mmap()

Different paradigm

With TPE, vulnerabilities in GNU make or CSH
become interesting
Various interpreters can give you enough control without
the need for native code execution

Recent demo by dpunk using foreign function interface

J. Tinnes, C. Evans Security In-Depth for Linux Software

Introduction
Privileges in Linux

Writing Good Code
Sandbox designs

Sandboxing Definition
ptrace(), setuid and SECCOMP sandboxes
Other approaches
Attack surface evaluation

Conclusion

Security in depth is important
Linux has no real sandboxing facilities
It’s difficult, but possible to write sandboxes
on current Linux kernels

Worth it for some software

J. Tinnes, C. Evans Security In-Depth for Linux Software

Appendix

Containing root

Process running as root can be contained
First requirement is to prevent root -> kernel escalation:

modules injection
Access to /dev/mem, /dev/kmem
Raw I/O

Can also have some use outside of Mandatory Access Control

J. Tinnes, C. Evans Security In-Depth for Linux Software

Appendix

Linux Capabilities Limitations
The need for uid switching

Don’t keep uid zero!
Even if you drop capabilities, you generally need to change
your uid

For compatibility reasons, capability model coexists with
uid = 0⇒ all_capabilities
On any execve with uid=0 or euid=0 you will be granted all
capabilities
Or you can create a root setuid executable and run it

J. Tinnes, C. Evans Security In-Depth for Linux Software

Appendix

Linux Capabilities: securebits

Starting with Linux 2.6.26 the kernel supports securebits
Allows to drop the backward compatibility of capabilities
with the old model
SECURE_NOROOT and SECURE_NO_SETUID_FIXUP

You still need to drop uid 0
Attacker might get a shell without securebits
Attacker can still backdoor a program executed with
different privileges

J. Tinnes, C. Evans Security In-Depth for Linux Software

Appendix

Linux Capabilities: securebits

Starting with Linux 2.6.26 the kernel supports securebits
Allows to drop the backward compatibility of capabilities
with the old model
SECURE_NOROOT and SECURE_NO_SETUID_FIXUP

You still need to drop uid 0
Attacker might get a shell without securebits
Attacker can still backdoor a program executed with
different privileges

J. Tinnes, C. Evans Security In-Depth for Linux Software

Appendix

Linux Capabilities Limitations
Equivalence to root

Root equivalence
Many capabilities are actually equivalent to root

J. Tinnes, C. Evans Security In-Depth for Linux Software

Appendix

Linux Capabilities Limitations
Equivalence to root

Root equivalence
Many capabilities are actually equivalent to root

CAP_SYS_MODULE, CAP_SYS_RAWIO, CAP_MKNOD
execute kernel code
or communicate directly with devices

J. Tinnes, C. Evans Security In-Depth for Linux Software

Appendix

Linux Capabilities Limitations
Equivalence to root

Root equivalence
Many capabilities are actually equivalent to root

CAP_SYS_PTRACE
If you can ptrace() any process,
you can ptrace a process with all capabilities.
As explained before: if A can ptrace() B,
A is more privileged than B

J. Tinnes, C. Evans Security In-Depth for Linux Software

Appendix

Linux Capabilities Limitations
Equivalence to root

Root equivalence
Many capabilities are actually equivalent to root

CAP_CHOWN
1 Change ownership of /etc/passswd
2 Modify it

J. Tinnes, C. Evans Security In-Depth for Linux Software

Appendix

Linux Capabilities Limitations
Equivalence to root

Root equivalence
Many capabilities are actually equivalent to root

CAP_CHROOT
1 Create a working chroot environment
2 Backdoor ld.so or libc
3 hardlink a setuid binary inside the chroot environment
4 chroot, launch setuid binary

J. Tinnes, C. Evans Security In-Depth for Linux Software

Appendix

Linux Capabilities: conclusion

Capabilities are still not widely used
They can avoid confused deputy problems
But are hard to use effectively in case of
arbitrary code execution
It’s not necessarily trivial to know which ones are
full-privileges equivalent

And they are only a root privileges reduction mechanism

J. Tinnes, C. Evans Security In-Depth for Linux Software

	Introduction
	Privileges in Linux
	Process and Privileges
	Privilege-related Facilities

	Writing Good Code
	Preventing Common Security Flaws
	Privilege Separation
	Trust Relationships
	Update Strategy

	Sandbox designs
	Sandboxing Definition
	ptrace(), setuid and SECCOMP sandboxes
	Other approaches
	Attack surface evaluation

	Appendix
	Appendix

