
Semi-automatic binary protection tampering

Yoann Guillot & Alexandre Gazet

Sogeti - ESEC

Abstract. Both on malicious binaries and commercial softwares like
video games, the complexity of software protections, which aim at slowing
reverse-engineering, is constantly growing. Analysing those protections
and eventually circumventing them, require more and more elaborated
tools. Through two examples, we illustrate some particularly interest-
ing protection families and try to show their limits and how to remove
them to recover a binary which is close to the original code. Each of our
approaches is based on the use of the binary manipulation framework
Metasm.

1 Virtual machines

In recent years, following constant processors performances growth, software
protections became more and more ressource consuming. One class of protec-
tion perfectly illustrate this fact: virtual machine used as software protection.
In the field of software protection, the term virtual machine, refers to a software
component simulating a processor. We could also use the term of virtual proces-
sor. This “processor” is equipped with its own instruction set thus enabling the
execution of any program specifically written in this machine code. In this pa-
per, the term virtual machine always refers to a software protection component
and never to more advanced methods or softwares, which would be dedicated to
whole architecture virtualization like VMWare or VirtualPC.

This software protection method is now used in a large number of widely
available commercial protection like VMProtect, StarForce, Themida or also Se-
cuROM. Beyond those commercial products, we should also notice that many
malwares use virtual machines to protect their own code.

When actually dealing with software protection, implementing a virtual ma-
chine amounts to add an abstraction level between the machine code — as it is
perceived using a debugger or a disassembler — and its semantic, i.e. the func-
tion it operates. Analysing this abstraction level is often quite challenging and
especially time consuming. The simulated processor possesses its own instruc-
tion set and machine code, which have to be analysed. Most of the time, the
analyst has to develop tools to overcome this abstraction level and to be able to
understand the code.

Few elements should be taken to assess the resistance to analysis of such a
protection. Actually a virtual machine can be seen according to two following

models:

– A concrete model: it is the native code in which is implemented the virtual
machine. Typically, we will find at this level all the primitives dedicated to
memory manipulation, virtual registers, implementation of a fetch-decode-
execute cycle and instruction handlers (a function which emulates an in-
struction or an opcode). Analysis complexity may be very important if the
native code has been obfuscated. Obfuscation is another software protection
technique that we will deal with later.

– An abstract model: a virtual machine simulates the behaviour of a given
architecture or processor. The more the virtual architecture is complex and
distant from the concrete architecture, the more the analysis is slowed down.
First the translation process is slower, and second, the lack of references
brought by the new architecture is a source of confusion. At the highest
level of abstraction, the difficulty is also induced by the complexity of the
program that is executed on the virtual processor.

1.1 Detection

The detection of a virtual machine is linked to its implementation. Most of
the time, we can find some very characteristic schemes. The implementation of
a fetch-decode-execute cycle is performed with a loop. An instruction handler
is nothing more than a function taking some arguments, typically one or two,
and returning the result. Virtual machines also often makes reference to those
handlers using a function pointer table. From a structural point of view, printing
the call graph is sometimes extremely revelating.

Fig. 1: Classic structure of a virtual machine.

We find in this example (Fig. 1) all the elements we have mentioned:

– At the top: the main function. It is the implementation of a fetch-decode-
execute cycle. This loop dispatches the execution flow to the right handler,
responsible for the current instruction treatment.

– Then we recognise our instruction handlers which are all located at the same
logic level (here in blue).

– Handlers use tool functions (here in purple) to access the operands for ex-
ample.

– Finally at the lowest level, all the primitives dedicated to the manipulation
of physical virtual components: memory, registers, IO ports, etc. They are
the link between the abstract and concrete models.

This scenario is the ideal case study. In practice, it is often harder to extract the
whole structure. As a consequence, only the experience and the intuition will
pay for the analyst.

1.2 Analysis

In a first time, the analysis of a virtual machine goes through the understanding
of the abstract architecture or processor. Once it has been conceptualised, it is
possible to identify each of the instruction handlers, and so the instruction set of
the virtual machine. This analysis is most often based on a dynamic approach,
like the observation of a data transfer between a register and a memory area.
The main strength of a virtual machine lies in its abstract model while on the
contrary its main weakness lies in its concrete model. The latter model contains
all the clues that make the analysis possible: a context, a handler function pointer
table, instructions and operands decoding primitives . . .

The second step is the translation from the virtual machine code to a pro-
gramming language which is easier to understand and which we have a good
knowledge enough of. Typically it will be an x86-assembler like. This stage can-
not be avoided and precedes advanced phases of reverse-engineering like decom-
pilation.

1.3 Virtual machine hardening

There exist two main approaches for someone trying to harden a virtual machine
based software protection. First, and most obvious, it consists of a complexifica-
tion of the virtual machine itself; using a particularly exotic virtual architecture,
an important instruction set, or by applying a destructuring process on the vir-
tual machine. By destructuring process, we mean all processes which are able to
conceal, split, and in a more general way to delay the concrete model analysis.

The second approach turns toward virtual machine multiplication and so
making the analysis work increase. Once again there are two possible approaches
which can be combined:

– A flat multiplication: in a binary, n parts are protected, each of them by
a different virtual machine. If we consider d the performance deterioration

factor for one virtual machine, then whatever is the number of virtual ma-
chines, the performance deterioration factor for the whole binary is equal or
lower to d.

– A vertical multiplication: here, the idea is to conceive virtual machines exe-
cuting them-selves others virtual machines. If we consider the maximal num-
ber n of stacked virtual machines, then the performance deterioration factor
may locally be equal to dn. Even on a powerfull processor, performances are
dramatically decreasing.

The goal of these techniques is to create an as great as possible asymmetry
between the protection’s cost and the analysis’ cost. Nevertheless, both flat and
vertical multiplication rely on the hypothesis that the author is able to produce
unique and original virtual machines. We mean that analysing one instance of
virtual machine should give as few as possible information concerning the anal-
ysis of another sample. Ideally, the author strives to force the analysis of each
virtual machine. In practice, the author will simply try to complexify the au-
tomation of the analysis. Basic techniques of poly/metamorphism may appear
to bring a sufficient and satisfying level of complexity.

This trend to more complex and elaborated virtual machine-based software
protection clearly implies the need for tools able to carry out strong abstraction
on the code.

2 Obfuscation

As previously mentioned, the strength of a software protection technique lies in
the asymmetry between the protection’s cost and the analysis cost. Obfuscation
is a technique that consists of increasing analysis’ complexity by deeply distort-
ing code’s readability. Obfuscation should be applied thoughtfully on important
parts that are really valuable for an attacker, but it should not act as markers
for these parts. An important problematic is to define the resistance and the
effectiveness of an obfuscation function.[?].

An obfuscation process or function may be defined as a transformation ap-
plied to the code that preserves its semantics.

2.1 The semantics

Semantics is the meaning the we give to the code, its function or its role. If we
consider a part of code denoded p, p′ its obfuscated form and I the set of initial
possible states, then preserving its semantics may be formulated as follows:

∀s ∈ I, p(s) = p′(s)

Locally, i.e. at instructions level, it is clear that contexts may differ partially.
Just take a part of code which is responsible for the calculation of an addition:

once obfuscated, it should return the correct result, whatever the intermediate
states it goes through. In a more concrete way, it means that many registers, or
memory blocks, are essential because they contain the results or have an influ-
ence on it; others are not. This is what we call the significant context.

Preserving the semantics of the significant context is essential, since it guar-
antees the correct execution of the binary once the obfuscation function has been
applied.

2.2 The transformations

Although processes of obfuscation differ depending on their objectives and the
level of abstraction at which they are applied, all can be modeled in the form of
a transformation. We will first illustrate this concept with few examples that we
have found in different binaries we have analysed.

Neutral element. Obfuscation using neutral elements (Fig. 2) is relatively
weak and we will try to see why.

1 ror eax , 0dh ; @948c6d c1c80d

2 xchg eax , edx ; @948c70 92
3 ror edx , 13h ; @948c71 c1ca13
4 xchg eax , edx ; @948c74 92

1 rol eax , 0ah ; @948bd7 c1c00a
2 xchg eax , ebx ; @948bda 93

3 rol ebx , 16h ; @948bdb c1c316
4 wait ; @948bde 9b

5 xchg eax , ebx ; @948bdf 93

1 rol esi , 9 ; @948a94 c1c609

2 pushfd ; @948a97 9c
3 add eax , esi ; @948a98 01f0

4 wait ; @948a9a 9b
5 sub eax , esi ; @948a9b 29 f0
6 lea esi , dword ptr ds:[esi] ; @948a9d 8d36

7 push eax ; @948a9f 50
8 pop eax ; @948aa0 58

9 popfd ; @948aa1 9d
10 rol esi , 17 ; @948aa2 c1c617

Fig. 2: Neutral element based obfuscation

Actually this is the simplest scenario we can find when dealing with obfusca-
tion: significant contexts before and after execution are equals. Independent one
from the others, the design of each pattern is trivial. Each effect is subsequently
cancelled, thus the semantics is preserved. In the last of the three examples

above, sub instructions cancel add instructions, pop instructions cancel push in-
structions, rol 9 and rol 17h complement each other arithmetically. . . This prop-
erty will be the basis of a method for automatic detection. Moreover, a second
property is also very intersting and useful during a manual analysis: a sort of
visual symmetry can be observed in the instruction blocks.

Once we have defined inserted patterns as neutral elements, we know that
it is possible to reduce the code by simply masking those pattern. In practice,
those sequences are often replaced by nop instructions, which happened to be a
remarkable form of neutral element; a neutral element is substituted to another,
then codes are equivalent. This attack is quite trivial. Once the patterns are
identified, a basic matching at hexadecimal level is enough. There is no need to
interpret the code. The more an attack is led at a low level of abstraction, the
more it is simple and effective.

1 mov eax , var1

2 xor eax , 2 c1a83c1h
3
4 mov ebp , var2

5 xor ebp , 0 f91628c5h
6 xor ebp , 0 d50cab04h

Fig. 3: Double XOR

Constants expansion. Constants expansion stands for a kind of transforma-
tion which aims at complexifying the expression of a constant. Let’s consider the
following pattern as an example (Fig. 3).

Parameters var1 and var2 are XORed using the same 32 bits key. The key
appears distinctly for the first parameter, while this is more ambiguous until
we realized that: 0f91628c5h⊕ 0d50cab04h == 2c1a83c1h. Here the idea is to
express the key as the result of the XOR of two constants.

The constants used in some algorithms are really significant, and can be used
to immediately identify a function as a hash function for example. Thus, it is
really interesting to try to hide them.

In our example, double XOR is really basic, but others systems may be much
more arduous, both in their form (manipulations on registers, on the stack, in
memory) and in their content (constant expressed like the result of a complex
polynomial or trigonometric formula).

Structural obfuscation. Another type of frequently observed transformation
may take the form of the parts of code represented in Fig. 4.

1 push loc_403f84h ; @403f07 68843 f4000
2 ret ; @403f0c c3

1 push 89h ; @21730 6889000000
2 add dword ptr [esp], 179h ; @21735 81042479010000

3 popf ; @2173c 669d
4 jnz loc_2173e ; @2173d 75ff

Fig. 4: Structural obfuscation

The first example consists in pushing an address on the stack and then to use
the ret instruction as a jump. This type of transformation differs from simple
neutral element insertion in that the flow graph is modified: this is the reason
why we speak about structural obfuscation.

The second example is a well known type of structural obfuscation: the false
conditional jumps. For these jumps, the calculation of the condition always re-
turns true or always false. One of the two branches is never used. We will explain
in detail the nature of this protection later in this document. In this example,
using constants 89h and 179h, following by the popf instruction — let us recall
that it reloads the processor’s flag using the dword located at the top of the
stack — the code writer controls the condition of the jump instruction located
at @2173f.

In a general way, the apparent condition of the jump is used to artificially
complicate the control flow graph. In addition, this technique has the quite
interesting property to disrupt some disassembly engines. We said that one of
the two branches is a dead one; it is possible to insert garbage instructions aiming
at polluting the listing, inserting false references. . .

2.3 Complexity

The complexity resulting from the application of an obfuscation function relies
on the difficulty for an analyst to understand the transformation. The more it is
identifiable, the more it is easy to revert, and at a low level of abstraction. All
constant, thus predictable, element represents free information for the analyst.
This is particularly true when dealing with software protection. Inserting static
patterns is conceptually weak: even if a great variety of patterns increase the
difficulty, it is generally not enough to ensure a satisfying level of protection.

From developper’s point of view, the more effective solution consist of de-
signing a set of simple transformations (f , g. . .), that s/he masters easily and to
apply them successively, the output of one being the input of another. These basic
functions should be sufficiently varied: pattern insertion, trap insertion, control
flow graph modification, variable expansion, disassembly engine trap. . . The de-
velopment of each function is thus easier, and preservation of semantics is more
easily provable.

Following composition rules, it is possible to obtain as a result a final obfus-
cation function fres, defined as fres = f ◦ g ◦ . . . which is a priori much more
resistant to analysis that each individually function is.

To further strengthen the resistance, it may be efficient to vary the final
function of obfuscation by randomizing the order of composition are the number
of composed. We can also consider parameterised functions. The only limita-
tions are the imagination of the author and the performance degradation that
is tolerable. The technical constraint is becoming secondary as the capacity of
processors is increasing year after year.

3 Metasm

Metasm1 is an opensource framework in which it is possible to interract with
machine code in many formats (hexadecimal, assembler, C). It is entirely written
in Ruby2. That makes it the perfect tool for our needs : it will be easy to change
the way things are done, as an example how binary instructions are disassembled.
Metasm is a multiplatform and multiOS framework. Consequently, we should be
able to create an object to interact with any virtual processor we may encounter.

The framework was first introduced during the SSTIC 2007 conference[?],
and later the same year during the Hack.lu conference[?].

3.1 Code deobfuscation

A virtual machine used as a software protection is often implemented using
obfuscated native code. In order to ease the preliminary code analysis, we will
need to pass through this layer of protection.

This is acomplished by reading manually a few code sequences, finding the
obfuscation patterns used, and reverting them, either by the removal of the
useless instructions (junk code), or by restoring the standard instructions in the
case of behavior-level obfuscation.

This can be done at different times :

– either in the binary file before disassembling,
– or dynamically while disassembling,

– or on the assembly source once the disassembling is completed.

The first option is only possible if we manage to find a binary signature for
every pattern; however it may cause data corruption if the pattern has a false
positive (e.g. if it appears in the middle of a data section).

The last option is safer, but needs the disassembling process to work on the
obfuscated code. However it is quite possible that the obfuscated code imple-
ments some kind of function call, or a jump sequence, so that the disassembler
misses it. In this case, we will work on a fraction of the interesting code only.

This is why we chose the second approach.

Standard disassembly. Out of the box, the disassembly engine in Metasm
works this way :

1. Disassemble the binary instruction at the instruction pointer.
2. Analyse the effects of the instruction.

3. Update the instruction pointer.

1 http://metasm.cr0.org/
2 http://ruby-lang.org/

The analysis of the effects of a given instruction enables to tell whether the
instruction does some memory access and/or changes the execution flow. If this
analysis reveals such an effect and this effect depends on the value of a machine
register, Metasm uses a backtracking technique to try to determine the value of
those registers.

Backtracking. Backtracking in Metasm consists in the symbolic emulation of
each instruction while walking all the execution flows that arrive to the currend
address, until the traced expression’s value is found. The flows used are tagged
so that if we may later find a new code flow that will run into the flow we are
examining, we are able to walk this new flow which may find a new value for the
expression.

The backtracking method needs an arbitrary arithmetic expression, zero or
more address to stop this backtracking process (addresses of start of symbolic
execution) and the address to begin the backtrace (end of symbolic execution).
The expression may include the symbolic value of any processor register (value
at the end address). The method will then return the same expression expressed
using the symbolic value of the registers at the start address.

For example, if we search the value of the eax register after execution of “add
eax, 4”, we will get eax+4 : the value of eax at the end of the instruction equals
the value of eax before the instruction plus four.

Patched disassembly. The way we will proceed is not very intrusive but will
be unable to handle obfuscations that change the execution flow with jumps
further than a few bytes at a time.

We will modify the first step of the disassembler loop : how a binary instruc-
tion is disassembled. This step is implemented in the method called CPU#decode_instr_op.
When an instruction is decoded, it will be checked against a list of predefined
patterns, determined by a manual observation, to see whether it matches the
beginning of one of the pattern. If it matches, the next instruction is decoded to
continue the pattern matching. If the whole pattern matches, the corresponding
unobfuscated instruction is returned in place of the whole sequence. This will
totally remove the obfuscation layer.

Doing it this way makes it recursive, which means that it will automatically
solve interweaved patterns. This has the added benefit of reducing the length of
the pattern list.

Additionally, nop instructions are always merged into the following instruc-
tion, so that the junk code is absent in the final assembly listing.

The following figures (Fig. 5) show the result on a sequence of instructions.
We can see the result by looking at the binary encoding of the pop eax instruction.

In practice, we start by entering the most visible patterns, look at the result,
and refine the pattern list until the output is readable enough.

A more sophisticated approach would be to automatically analyse all code
sequence we encounter to determine it’s effects, and try to express those effects

1 push 42h ; @21d38h 6 a42
2 ror ebp , 0dh ; @21d3ah c1cd0d

3 xchg edx , ebp ; @21d3dh 87d5
4 ror edx , 13h ; @21d3fh c1ca13

5 xchg edx , ebp ; @21d42h 87d5
6 pop eax ; @21d44h 58
7 inc eax ; @21d45h 40

Fig. 5: Original

1 ror %1, X

2 xchg %1, %2
3 ror %2, 0x20 -X

4 xchg %1, %2

Fig. 6: Junk code pattern

1 push 42h ; @21d38h 6 a42
2 pop eax ; @21d3ah c1cd0d87d5c1ca1387d558

3 inc eax ; @21d45h 40

Fig. 7: Final

with less instructions. This would work particularly well with junk code (like ’add
2, sub 2’) ; but if the junk only preserves significant registers (for the program)
and allows modifications to unused registers we would need to define manually
what is significant and what is not. This is quite similar to code decompilation,
as we will see later.

3.2 Automatic analysis of virtual machine handlers

This can only be done after a preliminary manual analysis, which is necessary
to determine the virtual machine architecture :

– encoding of the virtual instructions,
– implementation of virtual registers (memory ? dedicated real register ?),
– virtual code flow.

This analysis will aswer those questions:

– How is the transition between virtual instructions done ?
– How are subfunctions called ?
– How do subfunctions return ?

It is then possible to automatically analyse the handlers, at least those im-
plementing simple functions (like arithmetic operations or data movements),
by comparing the virtual processor state before and after the handler symbolic
execution.

We will use the backtracking engine of Metasm to modelize the transfor-
mations done on all virtual registers by the handler ; also to track all memory
accesses.

These two informations suffice to summarize the handler’s effects; we will call
them the handler’s binding. We can then compare those transformations to a set
of known shapes to name the handlers (e.g. “addition between two registers”)
This is mostly useful to assign a mnemonic to each handler, in order to get a
readable virtual instructions listing.

Handlers whose binding are not recognized will need to be manually analysed.
Note that this analysis may be done on moderately obfuscated handlers, as

long as the binding can be accurately computed.

3.3 Pseudocode disassembly

Once all the handlers are identified, we can build a new CPU class for the virtual
processor, and integrate it in Metasm. We get this way a full-blown disassembler
able to work directly on the binary pseudo-code. This class may be automatically
created from the results of the automatic handler analysis.

The handlers of a virtual machine are quite simple, so this modelisation is
easy.

Furthermore, if we write a few other methods to handle the virtual assembly
language parsing, we could have a working assembler for the pseudocode, able
to generate a binary that could run on the virtual machine.

3.4 Decompilation

Most of the time a virtual machine instruction set is minimalist ; and it is
cumbersome to write a program directly in this language. The author often
uses another layer to ease his task, it may be a macro-assembler, or even a
rudimentary C compiler.

1 mov reg1 , addr_op1

2 load reg1 , [reg1]
3 mov reg2 , addr_op2
4 load reg2 , [reg2]

5 add reg1 , reg2
6 mov reg3 , addr_result

7 stor [reg3], reg1

Fig. 8: Macro for an in-memory addition

The macros are easy to spot, and it is very feasible to regenerate the macro-
code directly. We are then able to transform the low-level assembly to a higher-
level language, very close to what the original author manipulated.

At this step, the protection mechanism applied to the binary is totally re-
moved, and the real reverse-engineering work can begin to find the algorithms
in use.

4 Solving the T2 2007 challenge

We propose to use the features of Metasm to solve the challenge of the T2
conference for year 2007. This challenge includes many of the features we were
working on, it will be the perfect illustration of what we’ve done.

4.1 The challenge

The challenge is a simple Windows binary.
Once launched, it asks for a password and displays wether it is good or not.

The goal is to find a password that the software will accept.

A quick disassembly of the binary shows the actions of the program:

1. extract a file named “driver” to the disk, from the program’s resources,
2. load it as a kernel driver,
3. ask the password,
4. send the password to the driver through an IOCTL on a special file,
5. read the response from the driver,
6. display it to the user.

So we will need to look into this driver file, whose analysis is much more
interesting. The driver handles the IOCTL with a massively obfuscated function
; the disassembler hangs on an indirect jump that it cannot resolve.

Note: the assembly listing produced by Metasm is the instruction followed by a

comment where we find the address of the instruction (prefixed by a @), its binary

encoding, and the effects of the instruction : memory access and code flow modifications.

010203..<+37> means that the instruction is encoded starting by the bytes 010203

and goes on for 37 bytes.

4.2 Desobfuscation

A quick look at the code shows that the code is mostly junk code.

Wheels of confusion. We find many different obfuscation techniques.
Here is one of those patterns (Fig. 10).
We have here a little obfuscation recital in a few lines:

– First of all, structural obfuscation through a fake call (l. 3), followed by a
modification of the return address (l. 5).

– Then a fake conditional jump : using the constants 89h et 179h and the popf
instruction — which loads the processor flags from the stack — the author
ensures that the jnz (l. 10) is always followed.

1 // Xrefs: 1101ch

2 loc_215f8:
3 push esi ; @215f8h 56

4 push ebx ; @215f9h 53
5 lea esi , dword ptr [esi] ; @215fah 8d36
6 ror edi , 0dh ; @215fch c1cf0d

7 xchg ebx , edi ; @215ffh 87df
8 ror ebx , 13h ; @21601h c1cb13

9 xchg ebx , edi ; @21604h 87df
10 push ebx ; @21606h 53

11 push ecx ; @21607h 51
12 lea ecx , dword ptr [ebx+4] ; @21608h 8d4b04
13 xor ecx , edx ; @2160bh 31d1

14 xchg ecx , dword ptr [esp] ; @2160dh 870c24
15 push edx ; @21610h 52

16 mov edx , dword ptr [esp+4] ; @21611h 8b542404
17 rol edx , 0fh ; @21615h c1c20f
18 mov dword ptr [esp+4], edx ; @21618h 89542404

19 pop edx ; @2161ch 5a
20 pop dword ptr [esp+(-8)] ; @2161dh 8f4424f8

21 pop ebx ; @21621h 5b
22 rol eax , 2 ; @21622h c1c002

23 rol eax , 1eh ; @21625h c1c01e
24 pushfd ; @21628h 9c

Fig. 9: The driver’s code

1 pushfd ; @2164fh 9c

2 push edi ; @21650h 57
3 call loc_21656 ; @21651h e8.. noreturn x: loc_21656

4 loc_21656:
5 add dword ptr [esp+0], 24h ; @21656h 8184240000000024000000

6 pop edi ; @21661h 5f
7 push 89h ; @21662h 6889000000
8 add dword ptr [esp], 179h ; @21667h 81042479010000

9 popfd ; @2166eh 9d
10 jnz loc_21670 ; @2166fh 75ff x: loc_21670

11
12 // ------ overlap (1) ------
13 // Xrefs: 2166 fh

14 loc_21670:
15 jmp edi ; @21670h ffe7 x: loc_2167a

16
17 // ------ overlap (1) ------

18 out eax , 90h ; @21671h e790
19 nop ; @21673h 90
20 mov eax , dword ptr [ebp+8] ; @21674h 8b4508

21 adc eax , edi ; @21677h 11f8
22 int 3 ; @21679h cc

23
24 // Xrefs: 21670h
25 loc_2167a:

26 pop edi ; @2167ah 5f
27 popfd ; @2167bh 9d

Fig. 10: Overlapping and fake conditional jump

– A bit of overlapping. It consists in the encoding of two instructions, so that
the last bytes of the first instruction are also the first bytes of the last instruc-
tion. This is possible because in the IA32 architecture, the instructions do
not need to be aligned, and do not have a constant size So jmp edi (binary
ffe7) is coded using the bytes from the instructions jnz loc_21670 (75ff)
and out eax, 90h (e790). This kind of obfuscation would be impossible on
an ARM3 processor for example, where the instructions have a fixed width
and must be aligned.

This is quite charming, but has some major drawbacks:

– obfuscation patterns are almost never interweaved,
– they have very weak polymorphism (only on the registers used).

Those would allow us to get rid of almost all junk code using only a binary-
match pattern. Because we are trying to be as correct as possible, we will however
use the approach we talked about before: integration in the disassembler.

We find about 20 different patterns we can split in two groups: quite simple
sequences (ex: rotating a register of 32bits), and more complex ones. These often
involve pushing values on the stack and manipulating them ; however they are
always put inside a pushfd ... popfd containment, which make them quite easy
to spot.

Once those patterns are integrated to the disassembler, the code is much
more human-friendly.

Set the record straight. We then encounter a quite intriguing construction.
It (Fig. 11) reads the value of the processor counter 4, and uses this value

to chose which branch of a conditional jump to take. But this value is almost
random, and hard to guess ! You have to be quite optimistic to play heads or
tails in the code of a driver ; and as Albert said, “God does not play dices”.

Lets take a step back.
A quick manual look shows that both branches that follows the conditional

jump are exactly the same: they are both B and B′ implementations of the same
semantic A (Fig. 12).

This obfuscation technique differs from the simple pattern insertion because
it changes the execution flow inside the binary: it is a structural obfuscation.
The use of rdtsc is clever: two executions of the file will not produce the same
trace, because the value of the counter is not predictable. So a breakpoint set
without caution on a first review of the code may never be triggered during later

3 Advanced RISC Machine
4 RDTSC means ReaD TimeStamp Counter.

1 // Xrefs: 1101ch
2 loc_215f8:

3 push esi ; @215f8h 56
4 push ebx ; @215f9h 53

5 pushfd ; @215fah 8 d36c1cf0d87dfc1cb13.. <+37 >
6 rdtsc ; @21629h 9 c5031c0668cc83d0900.. <+15 >
7 imul ecx , ebx ; @21642h 0 fafcb

8 cmp cl , 7fh ; @21645h 80f97f
9 jnb loc_21aba ; @21648h 0 f836c040000 x: loc_21aba

10
11 popfd ; @2164eh 9d
12 pop ebx ; @2164fh 9 c57e800000000818424.. <+48 >

13 pop esi ; @21689h c1c7099c01fa9b29fa8d..<+8>
14 [...]

15
16 loc_21abah:

17 popfd ; @21abah 9d
18 pop ebx ; @21abbh 57870 c245f87cf5b
19 pop esi ; @21ac3h c1ce0d87cec1c91387ce..<+9 >

Fig. 11: Unobfuscated code

Prologue

Traitement
des données

A

Epilogue

Prologue

RDTSC

Traitement
des données

B

Traitement
des données

B'

Epilogue

Fig. 12: Structural obfuscation

reexecutions. On the other hand, rdtsc is one of the instructions that will never
appear in a normal code sequence, and will flag the code as suspicious for an
attacker.

Note that the two branches are not exactly the same : they are independently
obfuscated by random patterns that we’ve seen before ; therefore we cannot make
a bit-to-bit comparison to detect the duplication.

We’ve chosen to consider this sequence as a junk code pattern, and the dis-
assembler will always follow the first branch of the conditional jump from now
on. The other branch is still disassembled however, just in case we would want
to manually check the similarity of both ways, but it will not be shown in the
samples we’ll use in this paper.

Master of the rings. There are still some unexpected code sequences.

1 pushfd ; @131c0h 9c
2 push eax ; @131c1h 50

3 xor eax , eax ; @131c2h 31c0
4 mov ax , cs ; @131c4h 668cc8

5 cmp eax , 9 ; @131c7h 3 d09000000
6 jle loc_131d5h ; @131cch 7e07 x:loc_131d5h
7 rdtsc ; @131ceh 0f31

8 imul eax , ecx ; @131d0h 0fafc1
9 jmp eax ; @131d3h ffe0 x:unknown

10
11 // Xrefs: 131cch
12 loc_131d5h:

13 pop eax ; @131d5h 58
14 popfd ; @131d6h 9d

Fig. 13: Test of ring 0 execution

This code (Fig. 13) checks if it is being run in the Windows kernel context
(ring 0), or in the context of a userland standard process. In the kernel, the
segment selector cs’s value is 8 ; in userspace it is 0x1b. So the only goal of the
whole sequence, that we’ll encounter many times in the driver code, is to forbid
the execution of the protection in a standard userland process context.

One of the characteristics of the challenge, for anybody who would want to
analyse it using dynamic tools, is that all the intersting code is run in kernel
context ; and this environment is not ideal for debugging. Indeed, most of the
debugging tools are focused on userland code analysis, and few can handle the
specificity of ring 0 debugging. So it would be tempting to run the interesting
code in a standard process, to be able to use standard tools to watch its be-
haviour. When running this code sequence, the value of the cs selector will make
the conditional jump (l. 6) not to be taken. In this case, the three instructions
that follow will build a pseudo-random address and route the code flow to it

(using the jump at l. 9), which ensures an immediate crash for the program: in
the best case the address is invalid for code execution, otherwise it will contain
code that is not made to be run this way and will crash sooner or later.

1 loc_173a7h:
2 call loc_173ach ; @173a7h e8.. noreturn x: loc_173ach
3 loc_173ach:

4 pop edx ; @173ach 89 ed9c873424569b9d5e5a
5 cmp edx , 7 fffffffh ; @173b7h c1c10a5156e800000000.. <+18 >

6 jnb loc_17436h ; @173d3h 0f835d000000 x: loc_17436h
7

8 rdtsc ; @173d9h 558 d6d0811c5872c2450.. <+17 >
9 add edx , eax ; @173f4h 01c2

10 jmp edx ; @173f6h c1.. x:unknown

11 // [45 data bytes]
12

13 // Xrefs: 173d3h
14 loc_17436h:
15 mov edx , dword ptr [ebp+0] ; @17436h 8b5500

Fig. 14: Other ring 0 test

Another sequence has the same behaviour (Fig. 14).

This one checks the address of the code ; if it is below 80000000h (ie. user-
land5), a random jump is taken.

Those two sequences will join the ranks of the junk code patterns hidden by
the disassembler.

When you’re pushed. . . At this point of the analysis, the code shown is very
reduced, but still includes long and unfriendly sequences. There are no more
pure junk code sequences, but obfuscated sequences having a side-effect : this is
behavioural obfuscation.

Most of these sequences will push a value and manipulate it on the stack
(Fig. 15).

We also find references to the memory, always through an [ebx+<offset>] ex-
pression, that are very intriguing ; the offsets match nothing and seem randomly
chosen (Fig. 16 l. 5, 13, 15). Further examination shows that a large memory
area is used to hold temporary values only to obfuscate the code : in fact the
two branches following the rdtsc must have the same semantic but the offsets
are not shared between them. We will ignore such memory writes.

This enables us to remove large sequences of code, and we finally obtain a
very concise listing.

5 Yes, Windows may have booted with the /3G switch...

1 push esi ; @150eah 56

2 lea esi , dword ptr [ebp+8] ; @150ebh 8d7508
3 adc esi , ecx ; @150eeh 11ce
4 xchg esi , dword ptr [esp] ; @150f0h 873424

5 push ecx ; @150f3h 51
6 mov ecx , dword ptr [esp+4] ; @150f4h 8b4c2404

7 shl ecx , cl ; @150f8h d3e1
8 mov dword ptr [esp+4], ecx ; @150fah 894 c2404

9 pop ecx ; @150feh 59
10 pop dword ptr [esp+(-0ch)] ; @150ffh 8f4424f4
11

12 push dword ptr [ebx+0 e92h] ; @176beh ffb3920e0000
13 push ecx ; @176c4h 51

14 mov cl , 11h ; @176c5h b111
15 rol dword ptr [esp+4], cl ; @176c7h d3442404
16 pop ecx ; @176cbh 59

17 pop dword ptr [ebx+0 e92h] ; @176cch 8f83920e0000

Fig. 15: Behavioural obfuscation

1 loc_175e6h

2 mov eax , dword ptr [ebp+0ch] ; @175e6h 9 c600f3101c8c1c20a5
3 xor eax , 1749 c891h ; @1767eh c1ce0d87cec1c91387c
4 push dword ptr [ebx+eax] ; @1769bh ff3403

5 pop dword ptr [ebx+0 e92h] ; @1769eh 50 e8000000009c81842
6 [...]

7
8 rdtsc_17882h:

9 mov ecx , dword ptr [ebp+0ch] ; @1788eh c1c00a5053e80000000
10 xor ecx , 1749 c891h ; @178a7h 6089 f0d3c2619c81f19
11 push ecx ; @178c6h 9 c55e80000000081842

12 mov ecx , dword ptr [ebx+ecx] ; @178f4h 9 c5031c0668cc83d090
13 mov dword ptr [ebx+25b8h], ecx ; @1790eh 568 d730431de8734245

14 pop ecx ; @1792eh c1c102c1c11e59
15 push dword ptr [ebx+25b8h] ; @17935h 9 c5031c0668cc83d090
16 pop ecx ; @17952h 59

Fig. 16: Memory data junk

4.3 The virtual machine

Now we can begin the code analysis.

The first step is a big memory allocation (106000 bytes), whose address is
saved in ebx.

The code run then is a sequence of blocks with a very similar structure. Each
begins with the rdtsc splitting obfuscation sequence ; they manipulate dword-
sized memory area, whose address is taken from the ebp register and then xored
with a block-specific key. Those values are sometimes used as indexes in the
table allocated at the beginning in ebx.

Finally an epilog will always update ebp with the value stored at [ebp+4],
and run the block whose address is stored at [ebp].

We will interpret this execution scheme as the sequence of instructions of a
virtual processor: the blocks will be the handlers, the data at ebx will be the
virtual processor context, and the data at ebp will be the virtual instruction
operands.

next_handler next_instr arg0

key_1

key_2

handler

next_handler next_instr arg0

key_1

key_2

handler

arg1

ciphered instruct ion

ciphered instruct ion

mov eax, [ebp+8]
xor eax, h1_key_2
mov [ebx+eax] , 0
mov eax, [ebp]
xor eax, h1_key_1
mov ebp, [ebp+4]
xor ebp, h1_key_2
add eax, [ebx+14h]
add ebp, [ebx+14h]
jmp eax

mov eax, [ebp+8]
xor eax, h2_key_2
mov ecx, [ebp+12]
xor ecx, h2_key_2
mov ecx, [ebx+ecx]
add [ebx+eax] , ecx

Fig. 17: T2 virtual machine architecture

In the belly of the beast. The ebx register always points to the beginning
of the memory area allocated during initialisation, which holds the processor
execution context. The ebp register points to the virtual instruction being run.

Those instructions are a sequence of 2 to 6 memory words. Each one is
ciphered using a 32bits xor key, which is unique per handler. The first word is
ciphered using another handler-defined key (Fig. 17).

This first word holds the offset of the next handler to run; it has to be added
to the .data section base address to get the real memory address. The second
word holds the offset of the next instruction, also relative to the section base.
The following words have a handler-specific meaning. They are often an integer
(immediate value), or an index in the ebx table (ie. a virtual register).

The virtual registers are a few memory words, stored at a fixed offset from
ebx. The way the handlers are implemented, the register access method allows
arbitrary memory access, but only a handful of offsets are used in practice.

Every register has a specific role6 :

Offset Name Role
0x4 esp stack pointer
0x8 ebp frame pointer
0x64 r64 generic
0x68 r68 generic
0x78 r78 memory indirection
0x0 esp_init stack pointer initial value
0xc host_esp host stack pointer
0x18 retval subfunction return value

Initialisation. Let’s get back to the initialisation sequence.
The first instructions compute the start address for the .data section, and

store it in esi (l. 1-5).
A call is made to allocate 0x19e10 (106000) bytes, and the address of this

buffer (the virtual machine cpu context) is saved in ebx (l. 7-9).
Then some fields of the context are initialized

– The .data section base address is stored in [ebx+14h] (l. 11).
– The real cpu stack is stored in host_esp ([ebx+0ch]) (l. 12).
– The virtual stack is initialized with the value ebx+101d0h (ebx+66000), this

address is stored in esp and esp_init (l. 13-15).

A handler. To illustrate the working of virtual instructions, let’s take a look
at an addition handler.

1. The two first instruction retrieve and decipher the index of the source register
from the field at +0ch in the virtual instruction (2nd argument).

6 Registers in the last part of the table are scarcely ever used.

1 loc_215f8h:

2 call loc_216bch ; @215f8h 56538 d36c1cf0d87dfc
3 loc_216bch:

4 pop esi ; @216bch 5e
5 sub esi , 0e6bch ; @216bdh 81 eebce60000
6

7 push 19 e10h ; @216c3h 68109 e0100
8 call dword ptr [esi] ; @216c8h ff16 r4: xref_13000

9 mov ebx , eax ; @216cah 89 e489c3
10
11 mov dword ptr [ebx+14h], esi ; @216ceh c1c602c1c61e5089f08

12 [...]
13 mov dword ptr [ebx+0ch], esp ; @218f7h 89 ff9c871c24539b9d5

14 lea eax , dword ptr [ebx +101 d0h] ; @21904h 8 d83d0010100
15 mov dword ptr [ebx], eax ; @2190ah 558704245d955089c09

16 mov dword ptr [ebx+4], eax ; @21969h 56873 c245e87fe89430

Fig. 18: VM initialisation

1 loc_15336:
2 mov ecx , dword ptr [ebp+0ch] ; @15336h 9 c600f3101f131cbc1c1.. <+102 >

3 xor ecx , 842 b1208h ; @153a6h 528 d550811ca87142451.. <+49 >
4 mov ecx , dword ptr [ebx+ecx] ; @153e1h 516089 d0d3c2618b0c0b.. <+30 >

5 mov eax , dword ptr [ebp+8] ; @15409h 51 e8000000009c818424.. <+19 >
6 xor eax , 842 b1208h ; @15426h 9 cc1c10a5155e8010000.. <+37 >
7 add dword ptr [ebx+eax], ecx ; @15455h c1c60a5651e800000000.. <+15 >

Fig. 19: Addition of two registers

2. This index is used to read the virtual register.

3. The two following instructions in the handler retrieve and decipher the index
of the destination register at +8 in the virtual instruction (1st argument).

4. Finally the addition is done and stored in the context.

Thus, control is given to the following couple handler/instruction, thanks to
a code that is shared by all handlers.

1 mov ecx , dword ptr [ebp+0] ; @1546eh 8b4d00
2 xor ecx , 149 f0c63h ; @15471h c1ce0d87cec1c91387ce.. <+12 >

3 mov ebp , dword ptr [ebp+4] ; @15487h c1c20a92c1c0169b928b6d04
4 xor ebp , 842 b1208h ; @15493h 6089 f0d3c26181f55204.. <+12 >
5 add ebp , dword ptr [ebx+14h] ; @154a9h 036 b14

6 add ecx , dword ptr [ebx+14h] ; @154ach c1c11287d1c1c20e9087..<+4>
7 jmp ecx ; @154bah 89 ff9c871424529b9d5affe1

Fig. 20: Transition between two handlers

Next handler’s (l. 1-2) and instruction’s (l. 3-4) offsets, are decrypted in cur-
rent instruction code (one should notice the use of the specific key for handler’s
offset), they are then converted into absolute adddresses by adding base address
of .data section, stored in [ebx+14h] (l. 5-6). Finally control is given to the next
handler, ebp pointing the virtual instruction to interpret.

4.4 Modelling

This architecture’s main issue is that we have neither the handlers list, neither
instructions list: we have to follow the execution flow to find decryption keys
for each handler, and to decrypt each instruction to recover then next couple
handler/instruction, again and again.

This operation is quite tedious to do by hands, that is the reason why we
will automate it.

Follow the white rabbit. In order to do so, we use Metasm backtracking
engine, which permits to recover eip and ebp values at handler’s end depending
on their initial values.

Thus we are able to find the two keys for each handler: the one for the next
handler’s offset is the result of (backtrace(eip) − [ebx+14]) ⊕ [ebp], the key for
arguments is found using (backtrace(ebp)− [ebx+14])⊕ [ebp+4].

One these two keys acquired, we able to follow the instruction flow of the
virtual machine.

1 loc_19aa0h:
2 mov ecx , dword ptr [ebp+10h] ; @19aa0h 8b4d10

3 xor ecx , 2 ce6fc22h ; @19aa3h 9 c81f122fce62cc1c60a.. <+20 >
4 cmp dword ptr [ebx+ecx], 0 ; @19ac1h c1ce0d87cec1c91387ce..<+7>

5 jz loc_19b57h ; @19ad2h 0f847f000000 x: loc_19b57h
6
7 mov ecx , dword ptr [ebp+0] ; @19ad8h 538 d5d0811c3871c2450.. <+18 >

8 xor ecx , 3 c606446h ; @19af4h 8 d12565e9c81f1466460..<+8>
9 mov ebp , dword ptr [ebp+4] ; @19b06h 9 c5031c0668cc83d0900.. <+16 >

10 xor ebp , 2 ce6fc22h ; @19b20h 538 d5b0431eb871c2455.. <+30 >
11 jmp loc_19b92h ; @19b48h 89 c09c873c24579b9d5f..<+5> x:

12
13 // Xrefs: 19 ad2h
14 loc_19b57h:

15 mov ecx , dword ptr [ebp+8] ; @19b57h 8b4d08
16 xor ecx , 2 ce6fc22h ; @19b5ah 9 c6089d0d3c26181f122.. <+10 >

17 mov ebp , dword ptr [ebp+0ch] ; @19b6eh c1c80d92c1ca13928b6d0c
18 xor ebp , 2 ce6fc22h ; @19b79h c1c11287d1c1c20e9087.. <+15 >
19

20 // Xrefs: 19 b48h
21 loc_19b92h:

22 add ebp , dword ptr [ebx+14h] ; @19b92h 036 b14
23 add ecx , dword ptr [ebx+14h] ; @19b95h 034b14

24 jmp ecx ; @19b98h 518 d4b109c19d99d870c.. <+21 >

Fig. 21: Conditional jump

This method works well until the 18th handler, where an error occurs: each
key has two possible values.

Manual analysis of this handler (Fig. 21) reveals that it is a conditional
jump: if one of the virtual registers contains a non null value, control is normally
given to next handler, however, if this value is null, virtual address to execute is
encoded in fields 2 and 3 of the instruction.

These two fields are crypted with the key key_args of the handler.

We actually have two choices:

– code another pathfinding algorithm;
– re-use Metasm disassembly engine.

By looking at the first handlers we have just detected, their simplicity turns
us towards the second solution.

I know there’s an answer. The fundamental element of this approach is a
generic handler analysis method.

The method is composed of the following steps:

1. Handler’s disassembly, using the underlying native disassembler.
2. Examination of the handler’s form:

– How many basic blocs are there ?
– How these blocks are laid out ?

– How many exit points ?

3. Handler’s effects analysis:

– Which are the modifications on native processor’s registers ?
– Which are the modifications on memory ?

Tracing native register modifications is implicitly done by Metasm back-
tracking functionality: for each exit point, we list modifications applied on each
register compared to the beginning of the handler.

The analysis of effects on memory is not so straightforward: one needs to
go through the handler again, instruction by instruction, and to backtrace each
access when one finds an instruction that writes the memory.

We then get an array listing all the elements modified by the handler and,
for each of them, the value by which they would be replaced during execution.
We call this the handler’s binding.

Virtual machine architecture permits many shortcuts radically simplifying
the binding expression.

If an handler preserves the ebx register value (which, for recall, contains the
virtual machine context base address), and if ebp and eip bindings match the
transition sequence between handler, as seen precedently, then we got the two
decryption keys of the handler.

Arguments decryption key is then used to define the following symbolic en-
tities:

– arg0, which is the first argument of the instruction, considered as an integer
([ebp+8] ⊕ arg_key),

– reg0, which stands for the first argument used as a virtual register index
([ebx+arg0]),

– reg0b, which also stands for the first argument used as a virtual register
index (byte ptr [ebx+arg0]), but seen as a byte (an immediate parallel can
be made with al with respect to eax when dealing with x86 architecture),

– the same operations are repeated for each remaining arguments: arg1, reg1
etc.

This information permits to identify an handler by comparison to a set of
pattern that we define by hand. If none of the patterns matches, handler is
tagged as unknown; one then has to define a new pattern covering this case,
after a manual analysis.

Trivial patterns describe handlers made of only one bloc: we then sure to
have the whole handler’s semantic into the binding.

These handlers actually are the standart basic arithmetic operations, and
then read/write memory operations (indirections).

1 handler_13491h:
2 // handler type: add reg , reg

3 // "reg0" <- Expression[" reg0", :+, "reg1 "]
4 mov eax , dword ptr [ebp+0ch] ; @13491h 8b450c

5 xor eax , 8 d3f5d8bh ; @13494h 9 c358b5d3f8d9d
6 mov eax , dword ptr [ebx+eax] ; @1349bh 6089 e8d3c26150c1c502.. <+79 >
7 mov ecx , dword ptr [ebp+8] ; @134f4h 89 ed9c873424569b9d5e..<+3>

8 xor ecx , 8 d3f5d8bh ; @13501h c1c10a5156e800000000.. <+29 >
9 add dword ptr [ebx+ecx], eax ; @13528h 6089 c0d3c26101040b

10 mov eax , dword ptr [ebp+0] ; @13531h 558734245d87f58b4500
11 xor eax , 6 f9078cch ; @1353bh c1c30a5350e801000000.. <+69 >

12 mov ebp , dword ptr [ebp+4] ; @1358ah c1c3099c01de9b29de8d.. <+10 >
13 xor ebp , 8 d3f5d8bh ; @1359eh 9 c52e800000000818424.. <+57 >
14 add ebp , dword ptr [ebx+14h] ; @135e1h 558 d6b109c19c59d872c.. <+22 >

15 add eax , dword ptr [ebx+14h] ; @13601h c1e620034314
16 jmp eax ; @13607h ffe0

Fig. 22: Result of an automatic handler analysis: an addition

Many other handlers call natives functions. These call always use a function
pointer table, initialised when the driver is loaded.

The following functions are referenced into this table:

– ExAllocatePool : memory allocation,
– ExFreePoolWithTag : memoire free,
– a region of the driver, filled with zero (never called),
– a function displaying a debug string, using vsprintf and DbgPrint (never

called),
– MmGetSystemRoutineAddress: retrieves the address of an exported system

function from its name,
– a driver’s function implementing a MD5 has.

We know the semantic of each of these function, and so the whole handler’s
semantic.

MmGetSystemRoutineAddress may has been problematic; but, in practice, it
happens the all handlers that call it, use it to get the address of the native func-
tion KdDebuggerEnabled, with the purpose of crashing the process of a debugger
is detected.

The sequence responsible for the crash (Fig. 23, l. 20), has been reduced by
the deobfuscator.

Initially it was a random jump on the result of a rdtsc.
The pattern checks that the function whom we get the address actually match

the address of MmGetSystemRoutineAddress function. If the test is positive, this
handler tagged as trap, otherwise, it is treated as unknown.

Among remaining handlers, four are more complex to analyse, as they involve
conditional jumps.

– A virtual conditional jump, which jumps on a virtual address or another
function according to the nullity of a virtual register.

1 handler_13fb6h:

2 // handler type: trap
3 // "call_arg0" <- Expression[81929]

4 // "call" <- Expression[Indirection[[Indirection[[:ebx , :+, 20]..
5 jmp loc_1401bh ; @13fb6h 9c6 .. x: loc_1401bh

6 db "KdDebug " ; @14009h
7 db "gerEnabled", 0 ; @14010h
8 loc_1401bh:

9 call loc_14020h ; @1401bh e80.. noreturn x:loc_14020h
10 loc_14020h:

11 pop eax ; @14020h 58
12 sub eax , 17h ; @14021h 2d17000000
13 push eax ; @14026h 50

14 mov eax , dword ptr [ebx+14h] ; @14027h 508 b4314508b44240458..<+4>
15 call dword ptr [eax+18h] ; @14035h ff5018

16 cmp byte ptr [eax], 1 ; @14038h 803801 r1: unknown
17 jnz loc_14043h ; @1403bh 7506 x: loc_14043h

18
19 loc_1403dh:
20 jmp loc_1403dh ; @1403dh 0f3101c8ffe0 x:loc_1403dh

21
22 loc_14043h:

23 mov eax , dword ptr [ebp+0] ; @14043h 8b4500
24 xor eax , 45 f341a7h ; @14046h 351465 ef9335b3241cd6

25 mov ebp , dword ptr [ebp+4] ; @14050h 8b6d04
26 xor ebp , 0 b7048be8h ; @14053h 81 f5d4401e619b81f53c..<+3>
27 add ebp , dword ptr [ebx+14h] ; @14060h 036 b14

28 add eax , dword ptr [ebx+14h] ; @14063h 034314
29 jmp eax ; @14066h ffe0

Fig. 23: Kernel debugger detection check

– Three categories of handlers which define the value of a virtual register to 0
or 1, in accordance to the fact that its initial value is, respectively, greater,
lower or equal than the value of another virtual register.

For these cases, we use a little heuristic, in order to keep the code concise:
we look at the native instruction used for the conditional jump that we find in
the implementation of the handler.

Finally, for the two last type of handlers, one is an indirect jump which loads
the offsets of the next handler and next instructions from the values of two
virtual registers. The last one is more complex than others: it involves a loop
and seems to implement a kind of decryption routine (Fig. 24).

1 handler_23c8fh:

2 // handler type: decryptcopy reg , imm , imm , imm
3 mov edi , dword ptr [ebp+8] ; @23c8fh 50578 d00578d1b50585f.. <+138 >

4 xor edi , 2 c1a83c1h ; @23d23h 9 c81f7c1831a2c9d
5 push dword ptr [ebx+edi] ; @23d2bh ff343b

6 pop edi ; @23d2eh 5f
7 mov esi , dword ptr [ebp+0ch] ; @23d2fh 8b750c
8 xor esi , 2 c1a83c1h ; @23d32h 9 c81f6c1831a2c9d

9 add esi , dword ptr [ebx+14h] ; @23d3ah 037314
10 mov eax , dword ptr [ebp+10h] ; @23d3dh 8b4510

11 xor eax , 2 c1a83c1h ; @23d40h 9 c35c1831a2c9d
12 mov ecx , dword ptr [ebp+14h] ; @23d47h 8b4d14
13 xor ecx , 2 c1a83c1h ; @23d4ah 9 c81f1c1831a2c9d

14
15 loc_23d52h:

16 mov edx , dword ptr [(esi +(4* ecx))+(-4)] ; @23d52h
17 xor edx , eax ; @23d61h 31c2

18 mov dword ptr [(edi +(4*ecx))+(-4)], edx ; @23d63h
19 rol eax , cl ; @23d67h 505188 c9d34424045958
20 add eax , ecx ; @23d71h 01c8

21 loop loc_23d7ah ; @23d73h e205 x: loc_23d7ah
22 jmp loc_23d7fh ; @23d75h e905000000 x: loc_23d7fh

23
24 loc_23d7ah:
25 jmp loc_23d84h ; @23d7ah e905000000 x: loc_23d84h

26
27 loc_23d7fh:

28 jmp loc_23d89h ; @23d7fh e905000000 x: loc_23d89h
29

30 loc_23d84h:
31 jmp loc_23d52h ; @23d84h e9c9ffffff x: loc_23d52h
32

33 loc_23d89h:
34 mov eax , dword ptr [ebp+0] ; @23d89h 8b4500

35 xor eax , 0 a9c47c96h ; @23d8ch 351 d38ce7c358b440ad5
36 mov ebp , dword ptr [ebp+4] ; @23d96h 8b6d04
37 xor ebp , 2 c1a83c1h ; @23d99h 81 f5c52816f99b81f504..<+3 >

38 add ebp , dword ptr [ebx+14h] ; @23da6h 036 b14
39 add eax , dword ptr [ebx+14h] ; @23da9h 034314

40 jmp eax ; @23dach ffe0

Fig. 24: Decryption handler

This handler actually accepts four arguments: a register containing the ad-
dress of a destination buffer, an integer which is an offset in the .data section,
another integer standing for a size (in dwords), and a last one, used as decryption
key. It then copies the data from the .data section to the destination buffer, after
xoring them with the key. The key is modified at each round, using a shift and
an addition implying the index of the next dword to decrypt (l.19 et 20).

The bugle sounds as the charge begins ! Armed with this information, we
can now associated to each of our handlers:

– a virtual opcode name, to display the assembly listing,
– a list of symbolic arguments, to decode and interpret the arguments for each

virtual instruction,
– a binding which express instruction’s effects on the virtual processor’s con-

text,
– the two encryption keys (when existing), to decode the arguments and to

follow the execution flow.

These data can be calculated once for all: we backup them into a cache file
in order to speed up the script. Actually handlers native code disassembling and
deobfuscation is the most time consuming step.

For information, cache initialisation for all handlers (112) lasts almost 15
minutes on a standart configuration, while the whole treatment as describes in
this paper, with an already filled cache, lasts less than 30 seconds.

The idea to dynamically build a ruby class using this automatic analysis
method to interpret the virtual instruction handlers on the fly.

This class will be used as CPU for the standart Metasm disassembly engine,
in order to use it in a transparent way on the virtual code.

It works in accordance with the following description.
First, we define a virtual space of code, where an instruction address is the

couple (handler’s address, instruction’s address). Such an object, standing for
the first virtual instruction, is passed to Metasm as entry point of a program,
whom the CPU is an instance of the aforesaid T2CPU class.

This cpu contains a reference to an instance of standart Disassembler, the
same the we have used to generate listings used as examples in this article.

As we have seen in the part introducing Metasm, the disassembler ask to the
cpu to decode and analyse the instruction at the current address, update this
address et so on. This is where intersting things begin.

When a decoding request is received, our virtual process analyse it auto-
matically to determine instruction to send back, in addition to its effects; in
particular next instruction’s address.

Thus, in a transparent way, Metasm disassembles each of virtual instruction
like a classical program, providing us backtracking features on virtual registers.

The obtained listing obtained thanks to this step is already remarkable (Fig.
25).

1 entrypoint_219feh_21ea6h:
2 nop ; @219feh_21ea6h

3 mov r68 , 28h ; @138fah_35748h
4 add r68 , host_esp ; @1501dh_2adc7h

5 mov r64 , dword ptr [r68] ; @175e6h_38670h r4: dword_host_esp+28h
6 mov dword ptr [esp], r64 ; @156d1h_368a2h w4: dword_ctx+101d0h

7 mov r64 , 4 ; @13184h_34e02h
8 add esp , r64 ; @15e23h_34d28h
9 mov r68 , 2ch ; @138fah_37a96h

10 add r68 , host_esp ; @15336h_3a431h
11 mov r64 , dword ptr [r68] ; @18231h_31642h r4: dword_host_esp+2ch

12 mov dword ptr [esp], r64 ; @16f1bh_36aa2h w4: dword_ctx+101d4h
13 mov r64 , 4 ; @13626h_2fca1h
14 add esp , r64 ; @13491h_3594eh

15 trap ; @18c00h_35b6eh
16 mov ebp , esp ; @22d86h_34262h

17 mov r64 , 234h ; @13184h_1c968h
18 trap ; @1bf14h_36f9ah

19 add esp , r64 ; @1501dh_2b162h
20 trap ; @15a3ch_2a44fh
21 mov r78 , 200h ; @138fah_2f305h

22 trap ; @14121h_3a473h
23 add r78 , ebp ; @1501dh_3402ah

24 mov r64 , dword ptr [r78] ; @175e6h_35d98h r4: dword_ctx+103d8h
25 xor r64 , 1 ; @17f53h_37befh
26 jrz loc_2d630h_2d8ffh, r64 ; @19aa0h_1c6ffh x: loc_2d630h_2d8ffh

27 mov r68 , 0ch ; @13184h_394ebh
28 syscall_alloc_ptr r64 , r68 ; @25d49h_35b2fh

29 mov r78 , 200h ; @138fah_2926ch
30 add r78 , ebp ; @15e23h_32249h

31 mov dword ptr [r78], r64 ; @15fc3h_3119ch w4: dword_ctx+103d8h
32 loc_2d630h_2d8ffh:
33 decryptcopy r64 , 100h, 751734 b1h , 3 ; @2d630h_2d8ffh w4: unknown

34 mov r78 , 0 ; @13184h_1aab2h
35 add r78 , ebp ; @15336h_2d1abh

36 mov dword ptr [r78], r64 ; @156d1h_2a854h w4: dword_ctx+101d8h
37 mov r78 , 0 ; @13626h_3a2ebh
38 add r78 , ebp ; @15336h_33a37h

39 mov r64 , dword ptr [r78] ; @175e6h_2e159h r4: dword_ctx+101d8h
40 [...]

Fig. 25: Virtual machine code

We observe that it is a very low level assembly, using for example many
instructions to do the equivalent of a push. Instructions also seem to only ma-
nipulate variable on the stack.

Chronologically, it is at this time that we have been able to assign a name
and a role to each of the virtual registers.

By looking at handlers cache file, we notice that most of them are duplicated:
there are for example four handlers able to perform an addition between two
virtual registers, with no semantic differences.

4.5 Macro assembler

By filtering nops and others traps, we quickly come to the conclusion that the vir-
tual assembly language that we seen is the result of a macro-instruction oriented
programmation.

Indeed we find again and again identical instructions sequences, with only
few exceptions; these sequences are contiguous and perfectly cut out the text in
elementary blocks.

The work needed to rebuild macro-instructions from the listing is quite simi-
lar to what have been done to handle the deobfuscation process of driver’s code:
concatenate several contiguous instructions in another one, express the same
semantic in a concise way.

Here, pattern is really simple: it mainly consists of spotting an address in
a register and then resolving an indirection; in practice these operations only
involve many mov and add instructions.

As macro-instructions do not have a precise definition, we are free to use un-
usual constructions, involving many memory references in the same instruction,
or involving an indirection degree greater than one; which is classically forbidden
in real assembly language.

We also have to our disposal all information necessary to decipher parts of
.data section used by decryptcopy instructions; the optional pass permits to make
explicit many strings.

At this stage, the listing is quite concise and has a satisfying readability (Fig.
26).

Functions calls. We then recognise a quite intersting pattern: indirect jump
instruction is systematically used to execute an instruction whom address has
been pushed on the stack few instructions before. This remains ourself a classical
function call convention.

This one is a bit strange: first the return address is manually pushed onto the
stack, then frame pointer is backuped and finally arguments are pushed; after
which the exectution flow follows the subfunction’s code.

Typically, arguments are push before return address, and the the execution
flow is modified to enter into the function.

The epilogue is also distinctive: code first removes reserved space on the stack
for arguments and local variables, then it checks if stack pointer is equal to its
initial value (when virtual machine started), by comparing it with the esp_init

1 entrypoint_219feh_21ea6h:
2 mov dword ptr [esp], dword ptr [host_esp +28h] ; @219feh_21ea6h r4:d

3 add esp , 4 ; @13184h_34e02h
4 mov dword ptr [esp], dword ptr [host_esp +2ch] ; @138fah_37a96h r4:d

5 add esp , 4 ; @13626h_2fca1h
6 mov ebp , esp ; @18c00h_35b6eh
7 add esp , 234h ; @13184h_1c968h

8 mov r64 , dword ptr [ebp +200h] ; @15a3ch_2a44fh
9 xor r64 , 1 ; @17f53h_37befh

10 jrz loc_2d630h_2d8ffh, r64 ; @19aa0h_1c6ffh x: loc_2d630h_2d8f
11 syscall_alloc_ptr r64 , 0ch ; @13184h_394ebh

12 mov dword ptr [ebp +200h], r64 ; @138fah_2926ch
13 loc_2d630h_2d8ffh:
14 decryptcopy r64 , "\000\000\000\000\000\000\000\000\000\376\324\004"

15 mov dword ptr [ebp], r64 ; @13184h_1aab2h

Fig. 26: The same listing using macro-instruction abstraction-level.

value. If values match, the code exits from VM and gives back control to non-
obfuscated driver’s code, which itself sends back the answer to the user; when
they differ, the frame pointer and the return address are popped and control is
given back to the caller (Fig. 27).

Integrating these macros into Metasm permits to accurately handle subfunc-
tions; therefore, we cover a much more extensive virtual code sequence.

We now have a classical code design: few basic functions, like a strlen-like
function and also three others more substantial functions.

By displaying complete driver’s code once disassembled, and after having
tagged bytes encoding virtual instructions, it is possible to check that we actu-
ally have interpreted the whole binary; expect for few very short random bytes
sequences inserted between handlers.

This phase is thus successful.

We are at last able to focus ourselves on the code to get an idea of the
implemented algorithm.

The code really looks like to some C code, compiled without optimisation (or
even unoptimised). All operations are done on the stack, using space reserved
for local variables.

It is also quite redoundant: many values are copied unnecessarily in different
temporary variables on the stack, before reaching their final destination.

We rename variables according to their offset in the stack frame: dword ptr
[ebp+128h] is seen as var128, always for the sake of readability (Fig. 28).

4.6 Decompilation

Due to the multiplication of temporary variables, the code is still tedious to read.

1 mov r68 , 4 ; @138fah_353c6h
2 mov dword ptr [esp], 2507dh ; @13626h_2fa7eh

3 add esp , r68 ; @15e23h_1e097h
4 mov dword ptr [esp], 14cch ; @13184h_3302ch
5 add esp , r68 ; @1501dh_29749h

6 mov dword ptr [esp], ebp ; @16a01h_22b17h
7 add esp , r68 ; @15e23h_32514h

8 mov dword ptr [esp], dword ptr [ebp] ; @13184h_2be36h
9 add esp , r68 ; @13491h_351c1h

10 mov dword ptr [esp], dword ptr [ebp+4] ; @13bf0h_38c9eh
11 add esp , r68 ; @15336h_39e68h
12 mov ebp , esp ; @1d735h_386abh

13 add esp , 204h ; @13626h_323b7h
14

15 [function body]
16
17 add esp , -20ch ; @13626h_32000h

18 mov r64 , esp ; @22174h_34eeah
19 seteql r64 , esp_init ; @1fc6eh_3629ah

20 xor r64 , 1 ; @19357h_21febh
21 jrz loc_272dah_35a76h, r64 ; @1ab4fh_32340h

22 add esp , -4 ; @13184h_369a0h
23 mov ebp , dword ptr [esp] ; @187beh_251a3h
24 add esp , r64 ; @15e23h_378dch

25 mov r68 , dword ptr [esp] ; @175e6h_39ee2h
26 add esp , r64 ; @1bf14h_1c1edh

27 mov r6c , dword ptr [esp] ; @175e6h_39419h
28 jmp r68+13000 h_r6c +13000 h ; @23fb0h_381e2h
29

30 loc_272dah_35a76h:
31 syscall_free_exitvm ; @272dah_35a76h

Fig. 27: Subfunction call and return macros.

1 syscall_alloc_ptr r64 , 24h ; @138fah_2f2f0h
2 mov var20c , r64 ; @13184h_3924eh
3 decryptcopy r64 , "p0wered by T2 - http ://www.t2.fi \000?\365\256"

4 mov var4 , r64 ; @13bf0h_354a1h
5 call sub_13626h_323b7h, var0 , var4 ; @138fah_353c6h x: sub_13626h_323b7h

6 mov var0 , var21c ; @144cch_3807dh
7 call sub_138fah_33176h, var0 ; @138fah_23c63h x: sub_138fah_33176h

8 mov var0 , retval ; @168f4h_38615h
9 mov var4 , 10h ; @13184h_399eeh

10 mov r64 , var0 ; @13184h_376f2h

11 seteql r64 , var4 ; @1486dh_22be1h
12 xor r64 , 1 ; @17f53h_181f5h

13 mov var0 , r64 ; @13bf0h_37a11h
14 jrz loc_13184h_3276fh, var0 ; @14121h_2c78dh x: loc_13184h_3276fh
15 add esp , -23ch ; @138fah_1fbe1h

16 syscall_free var200 ; @138fah_311e6h

Fig. 28: Macro-instruction virtual code and local variable.

The idea is now to cut ourselves off from the implementation, and to try to
express the whole semantic, and not individual instructions. This seems feasible
as each of these instructions is really simple, without side-effect, and instruction
set is tiny.

It also happens that Metasm includes a C compiler, and thus has to its dis-
posal all the objects necessary to manipulate code in this language. We will try
to generate transcription of the listing into C code.

Ideally, the goal is to transcribe the program functionally, ignoring most of
implementation details; at first, we have to define significant actions from useless
ones. We will completely ignore register modifications and stack variables, and
only put attention for:

– functions calls, both internal and external, including their arguments,
– memory writings (outside the stack),
– and the predicated associated with conditional jumps.

This very simplified approach is ineffective for a concrete advanced language,
as data on the stack are meaningful: there are buffers, structures (in the C
language meaning of the term).

There also are problems linked with operating systems interactions, in partic-
ular threads or signals, without speaking about exceptions handling and others
joys. . .

In practice, we will content ourselves with working at instruction blocks level,
which is by far simpler than a global program approach, and provides quite
satisfying results.

We will use a recursive approach, function oriented, as one goes along through
the code from an entry point: when a function call is encountered, it triggers the
analysis of this function. This approach supposes that main code segment is a
function; this assertion is most of times verified.

The main objective is to reduce all intermediate assignments to stack vari-
ables. Thus, we need to ascertain which one are significant.

In a first pass on the code, we mark for each of them, which variable is read
and which is written. Then using function control flow graph, we know which
one we need to keep: the ones that are read in another block without being
overwritten in the meantime.

The Clairvoyant. We transform each basic block into its equivalent in C (Fig.
29): arithmetic operations are merged in a way that conveys the whole bloc
binding with respect to a significant variable expressed as a unique C expression;
jumps are translated into goto and conditional jumps into if (..) goto label;.

We are not interested in variables’ type for the moment, we will just con-
sidered them as integer (int); however, we keep indirections’ type: for the ones
referencing a byte, type is char, int for others.

1 void sub_13626h_323b7h(int arg4 , int arg0)
2 {

3 int var0;
4 int var200 ;

5 sub_13626h_323b7h:
6 var200 = 0;
7 var0 = var200 ;

8 label_13184h_31e59h:
9 if (*((char*)(var0 + arg0)) == 0)

10 goto loc_13bf0h_1aa3bh;
11 *((char*)(arg4 + var200)) = *((char *)(var200 + arg0));
12 var200 += 1;

13 var0 = var200 ;
14 goto label_13184h_31e59h;

15 loc_13bf0h_1aa3bh:
16 *((int*)(arg4 + var200)) = 0;

17 return ;
18 }

Fig. 29: Preliminary decompilation phase

There’s a time to live and a time to die. Next phase, and probably the most
improtant, is the recognition of C standard control structures: if, if/else et while.

Let’s start with the easiest: if.
while browsing the execution flow, if we encountered a conditional jump (ie.

a if (..) goto label;) whom label is located further in the function, we transform
it by inverting the if condition and replacing the goto by the whole code located
between the if and the label.

One needs to repeat the same treatment on what is now the then block, in
order to handle imbricated tests.

We quickly deduce how to handle if/else structures: if the then bloc, freshly
discovered ends with a goto label whom destination is in the code which remains
to analyse, we can remove the goto and move the sequence between if end and
the label in the else block.

The obtained code is clearer, but a pattern appears like a if/else (Fig. 30): a
then which contains a label and ends with a goto; moreover code following the
if jumps on this label. A test is added to correctly handle this case (Fig. 31).

The underlying code is quite repetitive; which results, among others, by some
if/else whom last expression are similar between the then and the else. We take
advantage of this phase to factorise the code and extract it from the if structure.

1 if (cond) {
2 a;

3 label:
4 b;

5 goto anywhere ;
6 }
7 c;

8 goto label;

Fig. 30: if/else pattern

1 if (cond) {
2 a;

3 } else {
4 c;

5 }
6 label:
7 b;

8 goto anywhere ;

Fig. 31: Solved if/else pattern

Once all the code have been processed according to this method, while han-
dling is simple: it’s a label following by a if whom the last instruction is a goto
jumping on this label. Few additional tests permit to recognise the associated
continue and break as well.

Finally, a last cosmetic pass is done, in order to remove unused labels in the
code. The result is now very satisfying (Fig. 32).

1 void sub_13626h_323b7h(int arg4 , int arg0)
2 {

3 int var0;
4 int var200 ;

5 var200 = 0;
6 var0 = var200 ;
7 while (*((char *)(var0 + arg0)) != 0) {

8 *((char*)(arg4 + var200)) = *((char *)(var200 + arg0));
9 var200 += 1;

10 var0 = var200 ;
11 }
12 *((int*)(arg4 + var200)) = 0;

13 return ;
14 }

Fig. 32: Intermediate decompilation phase

Project II. The last phase consists of determining variables’ type.

A first pass permits to notice which are the variables assigned with immediate
integers: these ones are typed as int.

Then we look for indirections with type casting, which, coupled with the
integers list, permit to determine the ones typed as pointer. Moreover, size of
referenced data as used to guess the type of pointed data.

A final pass remains to do, to correct cast sequences; one also needs to fix
pointer addition, substraction.

Final result goes beyond our expectations (Fig. 33).

1 void sub_13626h_323b7h(char *arg4 , char *arg0)
2 {

3 int var0;
4 int var200 ;

5 var200 = 0;
6 var0 = var200 ;
7 while (arg0[var0] != 0) {

8 arg4[var200] = arg0[var200];
9 var200 += 1;

10 var0 = var200 ;
11 }

12 *((int*)(arg4 + var200)) = 0;
13 }

Fig. 33: Final decompilation phase

We thus obtain a complete listing of the obfuscated algorithm, in only 352
lines, which can manually be reduced to as few as 200 lines.

This is now the time to have a moved thought for art craftmen, goldsmiths
of reverse, who have solved the challenge by hand. . .

For recall, native code consists of almost 40.000 obfuscated instructions which
implement 112 handlers used by 3.000 virtual instruction, the whole designed to
be painful to read.

4.7 It’s a trap !

The final examination of C code reveals that even at this abstraction level,
challenge’s designers still have affection gesture for us.

We discover few strange sequences (Fig. 34).

Decryptcopy is used to decrypt two strings in the original binary (here in
clear), pointed by var20c and var210. var210 is clearly a ciphered string, which
is deciphered into a buffer passed as argument. Deciphering key, is calculated at

1 void sub_13626h_38b14h(char *arg4 , int arg0)
2 {

3 var20c = malloc (20);
4 decryptcopy(var20c , "Q\213D$\b\213 L$\f\323\350 Y"

5 "\302\ b \000\000\000\006\271\004");
6 var210 = malloc (20);
7 decryptcopy(var210 , "X \244{\022\322\246\023\\|"

8 "\350\350\201\210\000\000\000\000_\335\271");
9 var214 = 0;

10 while (var214 < 13) {
11 r64 = ((int(*)(int , int))var20c)(arg0 , var214);

12 arg4[var214] = var210 [var214] ^ r64;
13 var214 += 1;
14 }

15 *((int*)(arg4 + 13)) = 0;
16 [...]

Fig. 34: Native shellcode

the line 9, in a strange way: the string pointed by var20c is called as if it was a
function body.

1 entrypoint_0:
2 // function binding : eax -> (dword ptr [esp+4]>>dword ptr [esp +8]), esp

-> esp+0ch
3 // function ends at 0ch
4 push ecx ; @0 51

5 mov eax , dword ptr [esp+8] ; @1 8b442408
6 mov ecx , dword ptr [esp+0ch] ; @5 8b4c240c

7 shr eax , cl ; @9 d3e8
8 pop ecx ; @0bh 59
9 ret 8 ; @0ch c20800 endsub entrypoint_0

10 db 0, 0, 6, 0b9h , 4 ; @0fh

Fig. 35: Shellcode pointed by var20c

It happens that this native shellcode is quite basic (Fig. 35), it returns its
first argument shifted to the right by a number of bits specified using its second
argument.

In this case, the first argument is one of the function parameters we study,
and the second is an index in the string being decoded.

The use of native code, in such a hĳacked way, suggests that others ambushes
are waiting for us.

It is confirmed precisely in the function’s epilogue. (Fig. 36).

1 *((int*)(arg4 + 13)) = 0;
2 var208 = malloc (8);

3 decryptcopy(var208 , "1\300 f \214\310\303\0000");
4 r64 = ((int(*)(void))var208)();

5 *((int*)(arg4 + 14)) = r64 + -8;
6 free(var20c);
7 free(var210);

8 free(var208);
9 }

Fig. 36: Killing zone. . .

Once again, a shellcode is used in the algorithm. Here, the returned value is
used to fill a part of the string deciphered by the function.

1 entrypoint_0:
2 // function binding : eax -> cs , esp -> esp+4

3 // function ends at 5
4 xor eax , eax ; @0 31c0
5 mov ax , cs ; @2 668cc8

6 ret ; @5 c3 endsub entrypoint_0
7 db 0, 30h ; @6

Fig. 37: ... firefight

The shellcode is still really basic, however its goals seems much less friendly:
it is a test to check that code effectively run in ring 0 (Fig. 37), as the ones find
during desobfuscation part.

This time, the test is quite pernicious should we say: if the test is negative (ie.
we are in ring 3), cs is equal to 8. The countermeasure is not a straightforward
crash but like we were used to, but it subtly modifies the result of a function,
surely crucial for the algorithm.

This kind of trap is most of time tedious to detect and to tamper, as effects
are visible much later during program execution.

Another deceit lies in another function (Fig. 38).
This function takes as arguments a string, applies a MD5 hash on it, and

returns a value derived from the hash. However a small modification, apparently
insignificant, comes to put a spoke in our wheel: things happen on lines 12 and
13 of the listing.

They check the address returned by malloc, and looks for a positive value.
Actually this is were the bias lies, as the value is signed. Once again, it the same
kind of ring level execution test.

1 int sub_13bf0h_2b788h(int arg0)
2 {

3 register int r64;
4 register int retval ;

5 int *var200 ;
6 int var204 ;
7

8 r64 = malloc (16);
9 md5(r64 , arg0 , 8);

10 var200 = r64;
11 var204 = var200 [0] ^ var200 [1] ^ var200 [2] ^ var200 [3];

12 if (r64 > 0)
13 var204 += 1;
14

15 free(var200);
16 retval = var204 ;

17 return retval ;
18 }

Fig. 38: Another ring 0 test.

4.8 So long, and thanks for all the fish

Once these last pitfall crossed, we can reconstitute the while algorithm.

1. Password’s length should be equal to 16 chars.
2. 3 integers (h1, h2, h3) are deducted from the password. Actually it uses a

base64 encoding, with a personalised base.
3. This 3 integers have to fulfil few requirements: one should get “T2” by xoring

the high and the low words of one of them; the third should be equal to the
MD5 hash of the two first, xored by itself (sub_13bf0h_2b788h(md5(h1 ⊕
h3, h2⊕ h3)) == h3).

4. Password should not contains chars + or /.
5. Once this requirements fulfilled, the first integer is used as a key to decipher,

an hardcoded string.
6. This string MD5 hash value is check as a final test.

By studying how the final string is deciphered, we discover that only 20 bits
of the key are significant. This value is easily bruteforceable: a tiny program
coded in assembly tests all the key in a fraction of a second.

One ends up at finding that only one integer deciphered the string passes the
MD5 test; this string is "t207@owned.by".

Thus we know 20 bits of the first integer.

The “T2” test also provides us with 16 additional bits for the second integer;
the relationship with the xor and the MD5 also permit us to deduce the third
bit of the two first integers.

Finally, the test carried out by this algorithm is really slack, it accepts a great
number of possible solutions (228 when ignoring test on invalid characters).

Epitaph. To conclude, the challenge revealed quite a good level, and was par-
ticularly interesting.

Solving it, in a purely static way was an exciting challenge which has led to
many improvements to Metasm

We are awaiting the 2008 edition forward!

5 Securitech 2006: a structural approach

The last part of this article is dedicated to an obfuscation technique that we
have already discussed quickly: structural obfuscation or control flow graph ob-
fuscation. To illustrate our talks , we have chosen the challenge No. 10 of the
2006 Securitech. This challenge was proposed by Fabrice Desclaux.

The binary. It is a Win32 executable; it takes a string as input and uses it to
generate an output which seems to include a hash. The goal consists off finding
the input that produces a given output. Binary’s main function is massively
obfuscated, preventing or dramatically slowing down all attempts to reverse it.

Initial goal was to force the challengers to solve it using a black box approach,
without access to the implementation. Our goal is to eliminate this obfuscation
layer and to recover the exact algorithm.

5.1 Control flow graph definition

The control flow graph is a fundamental structure, used both while the compila-
tion phase and while a possible analysis and disassembly phase. We will briefly
remind the main concepts associated with it.

– Control Transfert Instruction (CTI)
A CTI, is an instruction, whom the intrinsic nature is to possibly modify the
execution flow. This type includes (non exhaustive list): jumps (conditional
or not), calls and their counterpart returns, or interruptions. It is important
to emphasise that the primary purpose of these instructions is precisely to
act on the execution flow; contrary to others instructions, like a mov, that
may eventually throw an exception (ex: null pointer), and so disrupt execu-
tion flow, it can be seen as a side effect, and it is not their intrinsic nature.

– Basic Block
A basic block is a list of contiguous instructions, whom only the first may be
the target of a CTI and only the last may be a CTI. It is the atomic element
of the control flow graph. We can make the parallel with a critic section that
is impossible to preempt while being executed.

The control flow graph groups together these two notions. Graph’s nodes are
the basic blocks. Arcs represent the different relationships between these differ-
ent blocks; they represent a transfer of the execution flow: jump, function call,
return, etc. The control flow graph is probably the favourite level of abstrac-
tion to quickly and effectively visualise the code’s logic: loop, while, do-while,
if-then-else. . . For example IDA graph mode, since its version 5.0, is the perfect
illustration of the usefulness of this level.

While disassembling, Metasm implicitly rebuilds this control flow graph. In-
deed, internally, the object Disassembler creates and manages InstructionBlock
objects, which are the implementation of the notion we have just discussed. The
arcs are managed with a very fine granularity preserving all information. For
example we distinguish a normal arc, for example a jump, from an indirect arc
like the one produced by a function return. To visually take advantage of this ab-
straction level, a script has been developped to create a bridge between Metasm
and the graph editor yEd7. This editor takes as input a .graphml file, this file
format is based on XML and dedicated to graph description.

Fig. 39: yEd and Metasm

5.2 Predicate definition

From a functional point of view, a conditional jump is a predicate following by
a connection. When dealing with a legitimate conditional jump, a first set of
initial states (just call it A) causes the execution of one of the two branches, a
second set (B), complementary with the first one, causes the execution of the
other branche. A and B cover the set of all possible initial states, and are defined
according to the predicate. A conditional jump inserted during an obfuscation
process is, most of the time, corrupted, and the predicate contains a trap. When
it happens, A and B sets have remarkable properties.

7 http://www.yworks.com/en/products_yed_about.html

Obscure predicate. An obscure predicate is a boolean function returning al-
ways true or always false, but a priori, we are not able to predict the result.
One of our two sets, A or B, is empty. Actually the predicate has to be complex
enough and/or obfuscated, in order to be unpredictable in a trivial way[?].

1 if(x^4*(X -5)^2 >= 0) {
2 goto real_code;

3 } else {
4 goto no_man ’s_land ;
5 }

Fig. 40: Obscure predicate (pseudocode)

This few lines of pseudocode (Fig. 40) is a good example. Here, the predicate
is a small polynomial whom value is always positive or null, so it always returns
true. Written in C, the bias is very easy to guess; however, if we take a look at
the same function compiled using GCC 4.1.2 (Fig. 41).

1 loc_8048403h:
2 fstp qword ptr [esp+8] ; @8048403h dd5c2408
3 fstp qword ptr [esp] ; @8048407h dd1c24

4 call thunk_pow ; @804840ah e8e5feffff
5 fstp qword ptr [ebp+(-20h)] ; @804840fh dd5de0

6 mov eax , dword ptr [ebp+(-0ch)] ; @8048412h 8b45f4
7 sub eax , 5 ; @8048415h 83 e805

8 push eax ; @8048418h 50
9 fild dword ptr [esp] ; @8048419h db0424

10 lea esp , dword ptr [esp+4] ; @804841ch 8d642404

11 fld qword ptr [xref_8048590h] ; @8048420h dd0590850408
12 fstp qword ptr [esp+8] ; @8048426h dd5c2408

13 fstp qword ptr [esp] ; @804842ah dd1c24
14 call thunk_pow ; @804842dh e8c2feffff
15 fld qword ptr [ebp+(-20h)] ; @8048432h dd45e0

16 fmulp ST (1) ; @8048435h dec9
17 fldz ; @8048437h d9ee

18 fxch ST (1) ; @8048439h d9c9
19 fucompp ; @804843bh dae9

20 fnstsw ; @804843dh dfe0
21 sahf ; @804843fh 9e
22 jnbe loc_8048444h ; @8048440h 7702

23 jmp loc_8048452h ; @8048442h eb0e

Fig. 41: Assembly resulting from predicate function compilation

This implementation makes an heavy use of floatting point computations
(using the floatting point unit FPU). Recover the semantic of such a part of
code while reading it is not immediate. However, in a dynamic approach, an
emulator, or a static analysis tool[?], should be able to automate the discovery

and characterisation of such a predicate. This example is voluntarily basic, but
it is easy to reach much more complex construction.

At last, in our obscure predicate example, the else branche is a dead one:
it is never executed. To add confusion to this structure, one should duplicate
important parts of code into this branch and/or create false references to disrupt
disassembly engine, for example using jump or call that target an address in the
middle of a real instruction (overlapped code obfuscation).

Complete hazard. This new construction differs from the precedent as one
branch or the other it is taken indifferently. The predicate is just an hazard
source. In order to preserve whole binary semantic, the two branches are se-
mantically equivalent. Code’s duplication may be seen as a negative factor, as
binary’s size increase; that is the reason why duplicated parts are often scaled-
down, which quickly reveals diamond type constructions.

1 if(rand() %2) {
2 real_code_A

3 } else {
4 real_code_B

5 }

Fig. 42: Complete hazard (pseudocode)

The only requirement of this structure (Fig. 42) is to that real_code_A
and real_code_B are semantically equivalent. We have already tackle this
technique, but without explaining it, during the part dedicated to T2 challenge,
(ch 4.2); it was a very tiny part of the protection.

The waterer watered. Conditional jumps inserted to the end of obfuscation
reveal, most of times, biased predicates. As such, they present themselves prop-
erties liable to be detected and analysed. A tool able to model the mathematical
predicate function, will guess the true nature of the conditional jump.

From a developper point of view, it is interesting to hide the true nature of
the predicate. Thus, concerning the complete hazard form, he/she could take
care to involve significant variables in the calculation of the predicate to deceive
the analyst (or a tool). This precaution has in part been taken on the T2 chal-
lenge, but too simply. Actually finding a RDTSC instruction involved in the
calculation of the predicate, in privileged mode, is really suspicious and finally
quickly alerts the analyst.

In the same mood, when using obscure predicates, function should be varied
and complex enough, both on paper and in their implementation, to circumvent
or slow down all possible forms of analysis.

5.3 Portrait of a man

Before going further, we should recall an essential point. We have been able
to build the complete control flow graph thanks to the disassembling quality
proposed by Metasm. In few words, Metasm implemented a virtuous circle, in
which the dataflow is used to increase our knowledge of the controlflow, which
itself increase knowledge of the dataflow, and so on. . . To study a protected
binary, a simple disassembly engine is not sufficient, the mnemonic, a simple
textual translation from the opcode, is not enough. The main asset of Metasm
is its ability to express in an abstract way, the exact semantic of the instruction,
and a step further to backtrack instruction effects over the execution flow, in
order to improve the discernment of its disassembling. Once this has been said,
we can focus ourselves on the challenge itself. It massively uses obfuscation to
protect the algorithm. Actually five main techniques are used.

Uncontional jump insertion. Basic blocks are re-ordered and jumps are in-
serted between them to preserve the code’s semantic. A parallel can be made
with a permutation round in a cryptographic algorithm. This technique is effec-
tive against an analyst trying to trace step-by-step the code using a debugger
for example; s/he will “wander” from one end to another of the executable, and
it will be hard to stand back to rebuild a higher level logic. However, graphical
control flow graph visualisation tools, like IDA or Metasm with yEd, make it
totally ineffective.

Jump emulation. This technique may be seen like an extension of the prece-
dent, a bit more elaborate in its implementation. Basically, it consists off pushing
an address on the stack and using a ret instruction as a jump to this address.

1 push loc_4042fch ; @4027adh 68 fc424000
2 ret ; @4027b2h c3

Fig. 43: push-ret used as a jump

The main interest of this construction is that only the knowledge of the
semantic of the two instruction, permits to follow the correct execution flow.

False call insertion. Without recalling call convention, we can say that the
main property of these inserted calls is that they modify their return address
on the stack. This property is quite effective to push some disassembly engines
to fail; actually those which, by hypothesis, suppose that the call return to the
instruction immediately following the call instruction.

1 push esi ; @401873h 56
2 push ebx ; @401874h 53

3 call loc_403592h ; @401875h e8181d0000 x: loc_403592h
4 push ebx ; @403595h 53

5 add dword ptr [esp+4], 4 ; @403598h 8344240404
6 add esp , 4 ; @409d3eh 83c404
7 ret 8 ; @40c17bh c20800 x: loc_40187e

Fig. 44: False call skeleton

We have refined this example (Fig. 44) in order to keep only the code specific
to this pattern. In practice, these instructions are intertwined with others pat-
terns and real instructions. Moreover, this pattern is polymorphic, concerning
both the delta applied to the return address and the number of registers pushed
on the stack. Nevertheless, it is remarkable enough to easily match it. On point
to notice, there is dead code between the supposed and real return address, 4
bytes in this example.

Flow duplication. Here is the implementation of a biased predicate, using
a complete hazard form. Obfuscation engine selects a part of code, generally
limited, duplicates it in the two branches of a conditional jump.

As the two branches are semantically equivalent, whatever the hazard source
is, the main point is to make it seem plausible to disrupt the analyst.

Apparent hazard. This one is a direct consequence of the previous. Coupled
with the insertion of conditional jumps, we find hazard insertion, here it uses
the form of test and cmp instructions. For recall, these two instructions update
the processor’s flags, by comparing the two operands.

This example (Fig. 46) summarises the strengthes and weaknesses of this
technique. At first glance, it is tempting to seek for the origin of registers edi et
ebp used by the test instruction, this results in time waste and confusion. On
IA32 architecture, contrary to others architectures like ARM for example, many
instructions implicitly update the flags, in particular all arithmetic instructions.
In our example, we see that flags, which set the conditional jump jnz (l. 6),
are overwritten two times by the add and and instructions. This is the main
weakness of this technique, it is relatively easy to filter legitimate comparison
instructions using a basic data flow analysis.

Fig. 45: Flow duplication and false predicate insertion, seen using IDA

1 402 C44h test edi , ebp
2 402 C46h mov ebx , [ebp+arg_C]

3 402 C49h mov esi , edi
4 402 C4Bh add [ebx], edi
5 402 C4Dh and esi , 3Fh

6 402 C50h jnz short loc_402C5A

Fig. 46: test instruction insertion

5.4 Control flow graph analysis and factoring

To represent the magnitude of the problem, here’s the graph of control of the
main function’s epilogue, as found in the protected binary (Fig. 47).

Fig. 47: Protected main function epilogue.

Our approach takes advantages of our knowledge of the complete control flow
graph. From a given entry point, we linearly follow the execution flow until we
met a conditional jump. Once it happens, we build the execution flows asso-
ciated with each of the two branches. This process is recursive to handle code
duplicated many times.

With these two flows in our possession, the treatment is done in few stages:

1. Removal of test and cmp instructions, according to the method developed
precedently. Metasm associates each instruction with its semantic, using an
abstract expression, allowing to check if an instruction read/write processor’s
flag.

2. Removal of unconditional jumps inserted to compensate for the basic blocks
arrangement trick.

3. Removal of false call, their structure is remarkable enough to be matched.
The execution flow is built, finding a ret instruction causes the reconstruc-
tion of the call stack. Then it is easy to match the pattern to avoid false
positives (i.e. removal of real code).

4. Comparison of the two flows cleaned. For the sake of simplicity, we have
implemented a simple textual comparison of the two flows, instruction by
instruction. In the case of a more advanced protection, using poly/metamor-
phism, it would have been possible to proceed to a behavioural analysis, like
what has been done on T2 challenge to recognise handlers’ behaviour.

If the two flows are equivalents, we have a duplication structure. Then the
false conditional jump is deleted and, more important, the control flow graph is
modified: one branche is trashed out. All instructions tagged as “illegitimate” are
removed from the final listing presented to the analyst. Here is an intermediate
result on which we can see that the number of blocks has been divided by
approximately 5 (Fig. 48).

The result is already pleasant, but not yet optimal. Parts of the binary have
not been cleaned: actually only flows implied in a test of duplication have been
cleaned from junk code. That is the reason why an additional pass is done on
the whole control flow graph, contiguous blocks are also merge to make it more
concise. Final result is quite satisfying, we recover the original code completely
rid of the protection. Number of basic blocks has been divided by a factor of
about 10 (Fig. 49).

On the whole control flow graph, the measured reduction factor on the num-
ber of basic blocks is approximately equal to 7.7. Besides number of instruction
has also drasticly been reduced: almost 70% of the instructions have been re-
moved from final listing.

5.5 Icing on the cake: interoperability

We have in our hands a disassembly listing quite close from the original, we will
benefit from it and rebuild an executable devoid of protection.

Protected binary is a console application which requires very few system
libraries: it is possible to port the binary to an ELF file format, without too
much work.

We replace the GCC stub located at the entry point by our own code (Fig.
51).

The original binary starts by allocating a great amount of space on the stack,
and the function implementing this allocation is not compatible with Linux and
triggers a SEGFAULT. Thus, we add a small sequence to our loader that will
transfer the stack into the heap before giving the control to the original code.

Fig. 48: Epilogue with factored flows.

Fig. 49: Epilogue completely cleaned.

A compiler being included into Metasm, we do not even need to use an
external program to get a binary running on a unix operating system.

Well, basically, it is useless, but it’s fun.

5.6 solving

Having a clean code quite close from the original, the challenge is not so hard.
The password is split into many blocks, which are manipulated to produce the
output, few values are calculated: sum and product of a subgroup of chars, a CRC
and a MD5 hash. These different constraints permit, after a little bruteforce,
to find the correct solution to the problem. Actually the code contains, various
calculations that do not seem to be linked to the generation of the output string,
it may be intersting to investigate them.

1 require ’metasm ’

2 include Metasm
3

4 # read the binary
5 file = ’poeut.exe ’
6 pe = PE. decode_file file

7 pe.cpu = pe. cpu_from_headers
8

9 # clean code section compilation
10 src = File.read(’ poeut.asm ’).sub(’ entrypoint:’, ’’)
11 pe.parse ’. section ". clrtext " rx ’

12 pe.parse ’.entrypoint ’
13 pe.parse src

14 pe.assemble
15

16 # labels resolution , etc.
17 text = pe. sections .last.encoded
18 text.fixup! ’loc_0 ’ => 0, ’loc_1 ’ => 1

19 text.reloc.values .map { |r| r.target . reduce_rec }. grep (:: String).uniq.
sort.each { |t|

20 if t =~ /(?: dword |byte)_(4\w+)h/ and not text.export [t]
21 rva = $1.to_i (16) - pe. optheader. image_base
22 s = pe. sections .find { |s| s. virtaddr <= rva and s. virtaddr + s.

virtsize >= rva }
23 s.encoded . add_export t, rva -s. virtaddr

24 end
25 }

26
27 # clean binary generation
28 pe.encode_file ’unpoeut .exe ’

Fig. 50: Script generating a clean executable

1 .entrypoint hooked_entrypoint

2 hooked_entrypoint:
3 ; alloc heap space for ’stack ’

4 push 0x80100
5 call malloc

6 add esp , 4
7 lea ebp , [eax+0 x80000]
8 ; disable libc init (weird things w/ FindAtomA)

9 or dword ptr [40 fc00h], 1
10

11 ; init argc/argv/envp as args for main
12 mov ecx , [esp]
13 mov [ebp], ecx

14 lea eax , [esp+4]
15 mov [ebp+4], eax

16 lea eax , [eax+4*ecx+4]
17 mov [ebp+8], eax

18
19 ; call main w/ new stack
20 mov esp , ebp

21 call loc_403db0h
22

23 ; exit
24 mov eax , 1
25 mov ebx , 0

26 int 80h
27

28 ; puts is not autoresolved to libc
29 puts:

30 push [esp+4]
31 push puts_format
32 call printf

33 add esp , 8
34 ret

Fig. 51: Stub to port the binary to a ELF format

6 Conclusion

Through many examples, we have tried to illustrate the need for tools offering
always more abstraction in approaches of reverse-engineering techniques, and in
particular the study of protected code.

Reverse-engineering consists of rebuilding a stack of levels of abstraction. At
the base of this stack, we found the basic unit of information: the instruction. It
is the modelling of its abstract behaviour the enables Metasm to implement an
effective backtracking. The textual instruction is replaced by its semantics. This
powerful concept is the foundation of our works. On the Securitech challenge,
this has initially permit ourselves to gain the complete control flow graph, where
a classical disassembler would break on the very first obfuscation pattern.

Get back at a higher level, this property also enables us to go into basic
behavioural analysis: to cut off from the implementation: to concentrate on the
semantics. Thus, we have been able to automatically identify the behaviour of
each of the virtual machine handlers, and finally to model a virtual processor
to solve T2 challenge. The behavioural aspect that we deal with in this article
is very promising, and could later be developed by taking advantage of achieve-
ments in the field of static analysis[?].

We have stressed on the semi-automatic nature of the proposed approachesr;
indeed all rely on a part of manual analysis: awareness of a virtual machine,
extracting obfuscation patterns. . . Even if patterns matching is easily automat-
able, their identification still remains a manual process. This is also a promising
subject that we should consider in future developments.

From our approaches, on constant brings out: to understand a software pro-
tection, one must be placed at a level of abstraction higher than or equal to it.
To conclude, we would like to say that Metasm is a powerfull binary manipula-
tion framework, which is able to interact at every level of abstraction, from the
lowest — the hardware — to the highest one: the source code.

