
Automatic binary deobfuscation

Yoann Guillot & Alexandre Gazet
yoann.guillot@sogeti.com

alexandre.gazet@sogeti.com

Sogeti - ESEC
6,8 rue Duret, 75116 Paris

Abstract. This paper gives an overview of our research in the automa-
tion of the process of software protection analysis. We will focus more
particularly on the problem of obfuscation.
Our current approach is based on a local semantic analysis, which aims
to rewrite the binary code in a simpler (easier to understand) way. This
approach has the advantage of not relying on a manual search for “pat-
terns” of obfuscation. This way of manipulating the code is, at the end,
quite similar to the optimising stage of most of compilers.
We will exhibit concrete results based on the development of a proto-
type and its application to a test target. Current limitations and future
prospects will be discussed in as well.

As a continuation of our work from last year [1], we focus on the automation
of the software protection analysis process. We will focus more particularly on
the problem of obfuscation.

This problem is crucial as most malicious binaries (like viruses or trojans) use
this kind of protection to slow down their analysis and to make their detection
harder. Automation is a key step in order to face the constant growth of the
amout of malware, year after year.

Our previous paper was mainly focused on the attack and suppression of
protection mechanisms using the Metasm framework. It provides many useful
primitives to deal with protected code: control flow graph manipulation, recom-
pilation, filtering processor, . . . Nevertheless most of these approaches rely on a
tedious work of manual identification of the “patterns” used by the protection.

We will now present the development of our new methods, relying on a seman-
tic analysis of the binary code to extract a simpler representation. The objective
is no longer to seek and destroy known patterns, but to procede to a complete,
on-the-fly, optimised code rewriting.

We will exhibit concrete results obtained by applying these methods to a test
target. Then, current limitations and future prospects will be discussed.

1 Metasm
Metasm1[2] is a free binary manipulation framework. Last year, we used it to
solve two important reverse-engineering challenges. Based on these works, a few
1 http://metasm.cr0.org/

methods have been integrated into the mainstream code. They allow many re-
current analysis tasks to be simplified.

1.1 Disassembler

Metasm can disassemble a binary file from one or many entry point(s). It then
follows the execution flow and uses its built-in emulation engine to solve indi-
rect jumps and memory cross-references (ie: which instruction reads or writes
at which address(es)). This technique is referred to as backtracking inside the
framework. This concept is similar to the concept of slicing[3][4][5].

Covering the program’s code allow the construction of its execution graph
(aka control flow graph). The nods of this graph are basic blocks (atomic se-
quences of instructions — if we do not consider exception that may be raised).

These nods are organised in two interlaced graphs

– function’s block graph,
– functions and sub-functions graph.

This graph can be visualised using an interactive graphical interface.

1.2 New functionalities

Two main improvements have been made to the framework since our last paper.
The first one is a method allowing the graph to be modified by replacing some

of its components. This function, replace_instrs, requires three parameters:

1. the address of the first instruction of the first block to replace,
2. the address of the last instruction of the last block to replace,
3. the list of new instructions that will be inserted as a replacement (it may be

an empty list).

A new block is then built from the new list of instructions, and inserted into the
graph, instead of the previously selected blocks.

The second improvement is a method, code_binding, that allows to obtain
the semantics of a section of code.

The method takes advantage of the backtracking engine which is at the heart
of Metasm’s disassembler. The engine is called many times to determine the
semantics of the code section. It regroups the effects of:

– registers modifications,
– and memory writings.

For the moment, this analysis is limited to code sections with a simple linear
structure (without loop or conditional jump). As we will see later, it is neverthe-
less at the heart of most of our attacks. As an example, getting the semantics
allows us to overcome the level of abstraction provided by a software virtual

machine based protection.

Finally, the instrumentation of the disassembly engine has been facilitated
by the implementation and export of many callbacks, allowing us to take control
at different moments and to intercept manipulated data. Here are some of those
callbacks:

– when a new instruction is disassembled,
– when a jump is detected (conditional or not),
– when some self-modifying code is detected,
– at the end of the disassembler work.

2 Case study: a protection analysis

From now on, we use the generic term packer to refer to a software protection
applicable to a program (at binary or source level), in order to obfuscate its
original form and to slow down a possible attacker/reverse-engineer. “Classic”
packers, like AsProtect, PECompact, are usually well handled by security prod-
ucts, anti-virus software and automatic classification tools for example. Many
unpacking techniques have been developed over the last few years:

– Static/dynamic unpackers, most of time based on a deep analysis of how
the protection works. The unpacking process can later be automated using
a scriptable debugger for example.

– Generic unpackers (using code instrumentation[6], or emulation like Pandora’s
Bochs[7] or Renovo[8].)

Such protections mainly rely on concepts like compression and encryption
built right up against anti-debugging functions, licence management, etc. The
main weakness of this class of protection is that, at some point, the code has to
be decompressed/decrypted in memory (at least partially) before being executed
by the processor. It is then possible to dump and analyse the code.

Close to classic packers stands another class of protection that takes ad-
vantage of the virtualization concept. This class of protection is not vulnerable
to the previously mentioned attacks, and few generic analysis techniques have
been proposed. A part of our research is dedicated to virology and it happens
that we encounter many instances of the same virtualization-based protection.
Consequently, we have decided to carry out the analysis of this protection.

By quickly comparing the different instances of the protection, we have dis-
covered that we will manipulate to main concepts:

– Polymorphism. This concept came to the forefront in the early 90’s, with
viral codes as the main application field. The challenge was then to try to
defeat the signature based detection algorithms used by anti-virus software.
By mutating the code’s form, it was possible to circumvent a signature, and
make the malware go undetected. In order to do so, one could express the

same original code semantics using a different sequence of instructions. As
the battle raged on between viral code authors and anti-virus editors, the
editors tried to react, using more advanced algorithms to defeat obfuscation
techniques. Many more formal works have been published on this subject. As
an example, in 2003, Frédéric Perriot proposed an approach based on the use
of compiler optimisations to improve polymorphic code detection[9]; other
works were presented in 2008 by Matt Webster and Grant Malcolm[10]. In
the same spirit, one should be aware of Mihai Christodorescu’s paper[11]. In
these two cases, the main idea is to automate the deobfuscation process in
order to improve viral code detection rates.

– Virtualization. For recall, in the field of software protection, the term vir-
tual machine refers to a software component emulating the behaviour of a
processor. This virtual processor has its own set of instructions and executes
programs specifically compiled into the appropriate bytecode. It amounts
to adding a new level of abstraction between the machine code that is seen
during the analysis (using a debugger or a disassembler) and its real seman-
tics. For more details on the internal workings of a virtual machine based
software protection, the interested reader can refer to our previous paper[1].

The approach we will present here is thought to be didactic. At each step of
the analysis, we will point out the difficulties encountered and we solved them.

2.1 Discovering the protection’s architecture

It takes only a few minutes to discover that a virtual machine is used by the
protection. When loaded into a disassembler, many big undefined memory ar-
eas appear. Furthermore, many distinctive function calls are used (fig. 1): the
original code has been replaced by an initialisation stub invoking the virtual ma-
chine; the address pushed onto the stack is actually the address of the bytecode
implementing the protected algorithm.

Fig. 1. A virtual machine call

Two classical distinctive patterns (fig. 2), quite specific to virtual machine-
based software protection: a context (actually the virtual machine’s registers),
and a table of handlers (for recall we consider that a handler refers to the im-
plementation of a virtual opcode/instruction).

So far, so good; no real difficulties. The code is quite standard.

Fig. 2. Virtual machine context

2.2 Optimise to tame the code

We have seen that the protection refers to a table of handlers; the next natural
step is to analyse them. This will allow us to identify the instructions set of the
virtual processor. One can see an example of a handler in figure 3. The first
characteristic that one should notice is that the code is splitted into many basic
blocks, linked by unconditional jumps. This kind of code is sometimes referred
to “spaghetti code”. This technique is actually not very effective: in our previous
paper we already developed methods to automatically merge basic blocks when
needed and to rebuild the control flow graph.

One can also notice that most of the basic blocks imply many basic arith-
metic operations, and make excessive use of stack operations. This behaviour
clearly stems from an obfuscation process. We need to clean the code in order
to be able to analyze it effectively.

The difficulties can now be expressed like this: how can we get rid of the
obfuscation with the minimal amount of manual analysis? Our answer was to
use compiler optimisation techniques. An optimisation is a code transformation
for which many contradictory objectives may be sought-after: speed of execu-
tion, final size of code, etc. Our optimisation process has for only objective (our
optimisation criteria) to reduce the code to a minimal, concise form. We are
not at all preoccupied with performance or size, even if as a side effect of our
optimisation process they will also be dramatically improved.

One of the most surprising point about the optimisation techniques we used
is their simplicity. From an algorithmic point of view, these techniques are quite

Fig. 3. Standard structure of a handler.

affordable and quite effective. For this step, we draw our inspiration from works
proposed for an equivalent target[12]. Nevertheless, we did not adopt the same
angle of attack, namely working on a textual representation of the code (using
a lexer and a parser). Indeed, we already have a representation of all the disas-
sembled instructions: we can directly manipulate Metasm’s instruction objects
on the fly. Our methods will be performed at the assembly level, inside the basic
blocks of the control flow graph.

Here are some of the techniques we have implemented in our optimisation
engine:

1. Peephole optimisation. It amounts to replacing a known pattern (for ex-
ample a sequence of instructions) by a simpler form. This technique is, from
our point of view, the least interesting because it relies on a manual discov-
ery of those patterns. Nevertheless, for certain precise patterns, it may allow
us to avoid using too complex techniques.

2. Constant propagation. The basic idea is to propagate the known value of
a variable in the expressions using it (fig. 4).

1 mov al , 12h
2 mov cl , 46h
3 xor cl , al

1 mov al , 12h
2 mov cl , 46h
3 xor cl , 12h

Fig. 4. Propagation of value 12h through al.

The propagated value is 12h. It can be found at line 1, with register al being
assigned. On line 3, al, which has not been modified since, is then replaced
by its numerical value.

3. Constant folding. The initial value of a variable is simplified by statically
solving some superfluous arithmetic operations (fig. 5).

1 mov al , 12h
2 mov cl , 46h
3 xor cl , 12h

1 mov al , 12h
2 mov cl , 54h

Fig. 5. cl register assignment simplification.

At line 2, cl register is assigned with the value 46h; then at line 3, a xor
operation with a constant will modify the value contained in cl register. We

simplify this basic piece of code using a direct assignment of the cl register
by the result of the operation 46h xor 12h = 54h. Finally, line 3 is removed
from the control flow.

4. Operation folding. Once again, a computation is simplified statically, but
we do not compute a final result to assign to a variable.

1 add al , -7fh
2 add al , bl
3 add al , -70h

1 add al , 11h
2 add al , bl

Fig. 6. Reduction of the add computation.

In this example (fig. 6), two add instructions add al, -7fh and add al,
-70h are joined into a single one. The resulting instruction can be expressed
as add al, (-7fh + -70h), that is add al, 11h.
Furthermore, our optimisation engine handles the commutativity of opera-
tors, which allow us here to freely reorder a sequence of e.g. add instructions,
in the most useful way.

5. Stack optimisationWe did a very trivial implementation of this technique.
There are two use cases:
– A useless push-pop couple. For example a register is pushed on the stack

and popped without being read or written.
– An element a (for example register eax) is pushed onto the stack and then

popped into an element b for (for example register ebx). If possible this
push-pop couple is transformed into the clearer mov b, a instruction.

1 push ebx
2 sub al , 56h
3 pop ebx

1 sub al , 56h

Fig. 7. Useless push-pop couple.

According to figure 7, it is possible to clean the couple of instruction push
ebx - pop ebx as ebx register is not modified (no write access) between the
two considered instructions.

These different methods are integrated into an iterative process: while at least
one of the methods manages to optimise a piece of code, the process is called once
again. Despite their simplicity, the first results were beyond our expectations.

Fig. 8. Optimised handler.

The result is quite satisfying: the code of the handler has been drastically
reduced. Most of the handlers were initially composed of 100 to 200 instructions
and split into a great number of basic blocks. The semantically equivalent op-
timized code is reduced to at most 10 instructions, all of them inside a single
basic block. Actually, a few handlers (less than five), due to their function, are
more complex and are still composed of a small number of basic blocks.
We see now that all the handlers share a small final sequence of instructions.
This actually is a kind of control stub (fig. 9), which computes the address of
the next handler to execute. This computation is the decryption of the virtual
execution flow pointer using a key stored in the ebx register, while the bytecode
instruction pointer is located in the esi register.

As a conclusion, we can say that the semantics of a handler only rely on a
small number of instructions (fig. 10).

1 lodsb
2 add al , bl
3 xor al , 0d2h
4 sub al , 0f1h
5 add bl , al
6 movzx eax , al
7 jmp dword ptr [edi +4* eax]

Fig. 9. Decryption of the next handler’s index.

From a “defensive” point of view, using obfuscation, and by extension, poly-
morphism, is quite interesting. It can be considered on two different levels:

1 pop eax
2 add dword ptr [esp], eax

Fig. 10. Optimised handler’s code.

– locally: it increases the complexity of each of the handlers and raises the
amount of work needed to defeat the protection.

– globally: each generated instance of the virtual machine is different from the
next (the mutated code of each handler will differ). Thus, an attacker with
ineffective tools has to reanalyse each new instance from scratch.

From an “offensive” point of view, the obfuscation engine is by far too weak.
Rebuilding instruction through “spaghetti code” is not a difficulty. Even if we
work at a very low level of abstraction (inside basic blocks), results are quite self-
explanatory. The optimisation engine produces a very clean code and manual
analysis has been reduced to a minimum. The module progressively rewrites the
code.

Each of the optimisation methods is a rewriting rule, possibly associated
with one or more condition. Each of the transformations has to be semantically
correct: the optimised code should compute the same function as the original,
obfuscated code. Finally, one has to ensure that this engine, or rewriting system,
actually halts.

2.3 Handler analysis

The previous step allows us to get a clean, optimised code for each of the han-
dlers. Even if the result is very positive, we still are far from our objective. As
noted earlier, a method has been added Metasm, which allow the semantics of a
section of code to be computed. Thus, we’ll apply it on every handler.

1 pop eax
2 add dword ptr [esp], eax

1 dword ptr [esp +4] := dword ptr [esp +4]+ dword ptr [esp]
2 eax := dword ptr [esp]&0 ffffffffh
3 esp := (esp +4) &0 ffffffffh

We immediately obtain the semantics of the handler. From now on, this set
of symbolic expressions will be referred to as the binding of the handler.

2.4 Symbolic execution

The previous steps of the analysis are totally automated. When our tool faces
an unknown handler, it is disassembled, optimised, and finally its binding is
extracted. This work is a bit time-consuming, that’s why all of this informa-
tion is stored in a cache: a file containing the description (optimised assembly
code and semantics) of each hander is progressively updated during the analysis.

What we get here is actually the whole description of the bytecode inter-
preter used by the virtual machine.

This result is fundamental. From a theoretical point of view, given two lan-
guages La et Lb, it is possible to find a compiler of Lb in La, if we know an
interpreter of Lb written in La. This theorem is known as the second Futamura’s
projection[13]. We will see in the next steps how to practically translate this
theoretical result.

We have seen that each handler executes a small decryption stub to compute
the next handler’s index, and then gives it control. The index is stored encrypted,
in a cipher feedback mode in the bytecode. In order to be able to trace the
instruction flow, one has to know both the value of the key (updated at each
round) and the current bytecode instruction pointer. This behaviour looks like
the T2’07 challenge that we solved last year. Once again, we will tackle the
problem using a form of symbolic execution.

1 vmctx = {
2 :eax => :eax ,
3 :ecx => 1,
4 :edx => :edx ,
5 :ebx => @key ,
6 :esp => :esp ,
7 :ebp => :ebp ,
8 :esi => @virt_addr ,
9 }

Fig. 11. Declaration of a symbolic context

We declare a symbolic context (fig. 11): it is a partial representation of the
host processor, namely a standard Ia32 architecture. On one hand, the symbolic
execution is only done on interesting elements; non significant registers are sim-
ply not taken into consideration in the representation. On the other hand, many
registers are assigned with essential numeric values like key and virt_addr, which
are parameters for the decryption of the bytecode (respectively the initial value
of the decryption key and the initial value of bytecode pointer). Other registers
are assigned with a symbolic value like :eax (the two points are a distinctive

character to refer to a symbol in the Ruby language).

We have already obtained the binding of each of the handlers. The next
essential step is the “contextualisation” or “specialisation” of the handler. A
handler can be seen as a raw opcode, without any operands. It is necessary to
decrypt and follow the bytecode to specialise the handler and thus obtain the
real semantics of the handler-virtual instruction couple. Getting all the virtual
instructions associated with their control flow graph means recovering the orig-
inal implemented algorithm in clear.

Now, how can we specialise a handler? Using the symbolic context of the host
processor! To solve or reduce the various expressions that compose the binding,
one can simply inject the state of the symbolic context before the execution into
the computed binding. We already have at our disposal methods allowing us to
solve memory indirections referring to program data, which is very useful for
solving expressions using known memory pointers. The symbolic execution of a
handler finally amounts to the application of its solved (or specialised) binding
to the context (the context is updated); the symbolic execution of the program
is done by the symbolic execution of each of its virtual instructions.

In order to get a better view of this process, let’s look the next example, in
which every step is detailled:

1. Handler is disassembled.
2. Code is optimised (fig. 13).
3. Raw binding is computed (fig. 14).
4. Current context is acquired (fig. 12).
5. The binding is specialised using symbolic execution (fig. 15).
6. Context is updated (fig. 16).

Steps 1 and 2 are totally automated. We have already seen their internal
workings. If the handler description is not in the cache, it is computed when
needed, on demand.

The current context before the execution of the virtual instruction can be
seen in figure 12.

The disassembled and optimised code can be seen in figure 13. The control
stub, computing the next handler’s address is not displayed for clarity.

Figure 14 exhibits the raw binding. It is easy to see that all the semantic
elements are present:

– the write access on the top of the stack,
– incrementation of the esi register due to the lodsb instruction

1 eax := 2eh
2 ebp := ebp
3 ebx := 10016743 h
4 ecx := 1
5 edx := edx
6 esi := 10016716 h
7 esp := esp

Fig. 12. Current context

1 lodsb
2 sub al , bl
3 sub al , 63h
4 add bl , al
5 movzx eax , al
6 lea eax , dword ptr [edi +4* eax]
7 push eax

Fig. 13. Optimised handler

1 dword ptr [esp] := edi +4*((((byte ptr[esi]+ -(ebx &0 ffh))&0 ffh) -63h)&0 ffh)
2 eax := (edi +4*((((byte ptr [esi]+ -(ebx &0 ffh))&0 ffh) -63h)&0 ffh))
3 ebx := (ebx &0 ffffff00h)|(((ebx &0 ffh) +((((byte ptr[esi]+ -(ebx &0 ffh))
4 &0 ffh) -63h)&0 ffh))&0 ffh)
5 esi := (esi +1) &0 ffffffffh
6 esp := (esp -4) &0 ffffffffh
7 ip := 1000 da0eh

Fig. 14. Raw binding

– etc.

The context is then injected into the raw binding and the symbolic expres-
sions are resolved (fig. 15). In this example, we discover that the handler pushes
the symbolic value edi+1C on top of the stack.

1 dword ptr [esp] := edi +1 ch
2 eax := edi +1 ch
3 ebx := 1001674 ah
4 esi := 10016717 h
5 esp := esp -4
6 ip := 1000 da0eh

Fig. 15. Solved binding

Finally, writings done by the handler are passed to the symbolic context. Fig-
ure 16 exhibits the updated context after the symbolic execution of the handler.

1 dword ptr [esp] := edi +1 ch
2 eax := edi +1 ch
3 ebp := ebp
4 ebx := 1001674 ah
5 ecx := 1
6 edx := edx
7 esi := 10016717 h
8 esp := esp -4
9 ip := 1000 da0eh

Fig. 16. Context after symbolic execution

Using symbolic execution, we are now able to:

– compute the next handler index;
– compute the next virtual instruction address;
– and thus we can decrypt the whole bytecode according to the control flow

of the virtual machine.

2.5 Back to the roots

By using all of our previous results, we were able to easily generate the native
assembly code corresponding to the specialised handler (fig. 17) (actually, it is
the one we studied during the symbolic execution presentation). These few lines
of assembly are the textual representation of a virtual opcode, totally decrypted

1 lea eax , dword ptr [edi +1C]
2 push eax

Fig. 17. Generated native assembly.

and specialised into its control flow.

Implicitly, we have taken a crucial step by generating this native assembly.
Using the specialised binding of the handler, we have compiled a virtual instruc-
tion into its equivalent in native Ia32 assembly. We do this for all of the virtual
instructions, taking into consideration jumps and labels. Then, considering that
Metasm has a built-in compiler, we can automatically generate the corresponding
native machine code. This result is a direct application of second Futamura’s pro-
jection previously cited. We have created a kind of Lbytecode → LIa32 compiler.
To be more precise, we have specialised the interpreter. Like every compiler, we
will now optimise the generated code.

2.6 Compilation: the summer’s hit

The previous step gives us the bytecode of the virtual machine compiled into
native x86 machine code. This usage of compilation techniques has to be put
into perspective with works proposed by Rolf Rolles[14] targeting the defeat
of virtual machine like VMProtect using compilation. In his approach, virtual
machine bytecode was first translated into an intermediate representation to be
optimised and then compiled. We made the choice to directly translate bytecode
into assembly, using code symbolic semantics and specialised code from the han-
dler.

The compilation of the assembly is not a problem. Nevertheless, given the
huge number of stack instructions (push - pop), it clearly appears the virtual
machine behaves like kind of a stack automaton (fig. 18). This aspect of the code
is a problem, as it complicates the understanding of the code and is the source
of an important overhead.

Once again, we will use our optimisation engine. It will automatically clean
this stack-based aspect (fig. 19) without requiring additional work.

2.7 Everybody’s gone surfing

Even if most of the previous steps are automated and globally generic, the next
one requires some manual analysis. The code displayed in figures 18 and 19 is
an introduction to this next step.

This code is present throughout all the virtualized functions prologues. All
the host processor registers are pushed on the stack and then popped in memory

Fig. 18. Entry point of un-virtualized code.

Fig. 19. Entry point of un-virtualized slightly optimised.

areas, referred to using dword ptr [edi+xx]-like indirections. These indirec-
tions simply refer to the virtual context of the virtual machine. To summarise,
native registers are directly mapped onto virtual registers. The inverse process is
performed in each function epilogue. This analysis, while precious, is specific to
the target, thus there is a loss of genericity. Nevertheless it is important to point
out that in the final code, all the virtual machine artifact code will be removed.

Now that we are aware of the virtual context, the problem can be expressed
in these words: how can we abstract the virtual machine registers in our Ia32
disassembler?

The answer is actually quite simple: it is enough to extend the Ia32 proces-
sor that is used by Metasm to add these virtual registers. The Ruby code use to
create this extension is given in figure 20 for information. This is the key quality
of a framework like Metasm: each part is easily scriptable and can be adapted to
several usages, even the most obscure ones. From now on, an “extended” virtual
register will be seen and manipulated exactly like a native register.

1 def extend_ia32cpu
2
3 Ia32 :: Reg. i_to_s [32]. concat (%w[virt_eax virt_ecx])
4 Ia32 :: Reg. s_to_i . clear
5 Ia32 :: Reg. i_to_s .each { |sz , hh|
6 hh. each_with_index { |r, i|
7 Ia32 :: Reg. s_to_i [r] = [i, sz]
8 }
9 }

10 Ia32 :: Reg :: Sym. replace Ia32 :: Reg. i_to_s [32]. map { |s| s. to_sym }
11
12 end

Fig. 20. Ia32 processor extension.

Once the processor is extended, we walk through the instruction flow to in-
ject the new registers on-the-fly; they will replace the inexpressive and complex
indirections. Moreover, all of our optimisation methods can now be silently ap-
plied to virtual registers. This last step complete the defeat of the virtual code.
Let’s see in practice the result of the optimisation engine on a small code section,
step by step:

1. Original code, generated by the compiler’s Lbytecode → LIa32:

1 71h push 1000 a2b4h
2 76h pop edx
3 77h mov eax , dword ptr [edi +2 ch]
4 7ah add edx , dword ptr [edi +2 ch]
5 7dh push dword ptr [edx]
6 7fh mov eax , dword ptr [esp]
7 82h pop ecx
8 83h xor dword ptr [esp], eax
9 86h pushfd

10 87h pop dword ptr [edi +1 ch]
11 8ah lea eax , dword ptr [edi +18h]
12 8dh push eax
13 8eh pop edx
14 8fh pop dword ptr [edx]
15 91h lea eax , dword ptr [edi +18h]
16 94h push eax
17 95h lea eax , dword ptr [edi]
18 97h push eax
19 98h pop edx
20 99h pop edx
21 9ah push dword ptr [edx]
22 9ch push 1000 a2d4h
23 0a1h pop edx
24 0a2h mov eax , dword ptr [edi +2 ch]
25 0a5h add edx , dword ptr [edi +2 ch]
26 0a8h pop dword ptr [edx]

2. After the fist step: virtual registers have been injected (Cf. virt_ecx or
virt_eax) in the code that has been manipulated. Some virtualization is-
sues like computation from relative address to absolute address have also
been wiped (references to dword ptr [edi+2ch]). The number of stack op-
erations is also reduced.

1 61h push dword ptr [1000 a2d4h]
2 63h lea eax , virt_ecx
3 68h pop dword ptr [eax]
4 6ah lea eax , virt_ecx
5 6fh push dword ptr [eax]
6 7dh push dword ptr [1000 a2b4h]
7 82h pop ecx
8 83h xor dword ptr [esp], ecx
9 8ah lea eax , virt_ecx

10 8fh pop dword ptr [eax]
11 91h lea eax , virt_ecx
12 94h push eax
13 95h lea eax , virt_eax
14 99h pop edx
15 9ah push dword ptr [edx]
16 0a8h pop dword ptr [1000 a2d4h]

3. The number of stack operations (computations or simple movements) is,
once again, reduced.

1 61h push dword ptr [1000 a2d4h]
2 68h pop virt_ecx
3 6fh push virt_ecx
4 82h mov ecx , dword ptr [1000 a2b4h]
5 83h xor dword ptr [esp], ecx
6 8fh pop virt_ecx
7 91h lea eax , virt_ecx
8 99h mov edx , eax
9 9ah push dword ptr [edx]

10 0a8h pop dword ptr [1000 a2d4h

4. We progressively rebuild the initial data movements. For the moment at
least, two read access clearly appears (at address 68h and 83h).

1 68h mov virt_ecx , dword ptr [1000 a2d4h]
2 83h xor virt_ecx , dword ptr [1000 a2b4h]
3 91h lea eax , virt_ecx
4 9ah push dword ptr [eax]
5 0a8h pop dword ptr [1000 a2d4h]

5. The last lea (Load effective address) instruction is now reduced. We have a
very concise code.

1 68h mov virt_ecx , dword ptr [1000 a2d4h]
2 83h xor virt_ecx , dword ptr [1000 a2b4h]
3 0a8h mov dword ptr [1000 a2d4h], virt_ecx

In this brief example, the 26 lines of original code have been reduced to
only 3 lines of code. Useless movements or computations have been wiped. The
code can now be easily understood. This example is quite representative of the
effectiveness of the whole optimisation process. Finally, in the unprotected code,
we found some distinctive sequences shared by some code which has not been
virtualized: we can thus say that our work is done here. This result is quite
satisfying.

2.8 Partial conclusion

Here we have presented a concrete approach which uses the binary manipula-
tion framework Metasm. The concepts we have used rely on strong theoretical
results: partial evaluation and specialisation[15]. The key idea of specialisation
is to delete all interpreted elements. During our analysis, we took advantage of
all static information which allowed us to compute partial results: computation
of arithmetical operations used by the obfuscation process, computation of the
result of the application of the interpreter to the bytecode. Finally, once the
rewriting system has been applied to the code, we have a specialised program,
according to our own performance criteria, namely code conciseness and ease
of analysis. Moreover, this specialisation is almost optimal: we have suppressed
the interpreted code completely and recovered code that is highly similar to the
unprotected original[16].

More than a raw technical demonstration, this result is also an overview of
a possible new requirement for security products analysis engine like anti-virus
software or automatic classification tools. As noted previously, packers are more
or less well handled, but virtualization is still an issue. A tool like the one we
have developed makes it possible to recover a code which is equivalent to an un-
protected binary, automatically, for every instance of the protection. It is then
quite easy to detect variants from the same strain for example. Nevertheless,
it requires some heavy computation, such analysis may thus be delegated to
dedicated servers with sufficient ressources (hardware and time), or to cloud
computing technologies (which is the same in the end).

Our results are definitively positive, in particular for code deobfuscation;
however, we have to put them back in their context. Indeed, for example, our
optimisation engine only works locally inside basic blocks, it may be relatively
easy to circumvent it by adding extra-procedural obfuscation. A lack of a good
intermediate representation clearly appears, we need to be able to handle some
higher level concepts like loops, functions, etc. In the same vein as our decom-
pilation work from last year, we have chosen decompilation as a new work axis
in support of our optimisation engine. But we will now have to deal with C code
generation problems.

3 Decompilation

During the works presented previously, a big step was the reconstruction of
native assembly code from a binding, i.e. a bunch of affectations.

This is a tedious phase, because the assembly language, beside its being
tied to a fixed architecture, imposes severe constraints. For instance, in x86, it
is impossible to have two memory addresses referenced by a single mnemonic.
This forces us to know and work around those limitations, maybe by generating
two instructions to achieve a single operation. We also need to know precisely
which instruction is used to add two registers, or one register with a numeric
constant. . .

On the other hand manipulating C code is much easier. In fact, the binding
is a set of affectations, which can be directly written in C2. The C representation
also totally hides the CPU flags handling, which all the more lightens the data
that have to be handle. Finally, using C simplifies the control graph handling: it
is in fact simpler to walk an if/else node than to interpret and follow an assembly
conditional jump.

Of course, all this needs a correct translation of assembly code to C code,
which may be very challenging to achieve.

2 we must however take care of variable dependency, as the binding represents a set
of simultaneous affectations

3.1 Decompilation mechanisms

The decompilation module inside the framework is a work in progress. Here we’ll
present the internal workings as they are now, but be wary that later versions
may differ significantly.

From a given entrypoint in the disassembly graph, the graph is walked to
find basic block dependency, with respect to their register writing and reading
(producer/consumer). Each block is annotated with the list of registers that are
needed by another block later in a codepath, without having been rewritten in
between.

Every block then has its binding computed. In it, accesses to registers and/or
memory which backtrace to a stack offset are replaced by the symbolic value of
the function frame pointer, which shows the use of local variables as typically
done by compilers.

A correct binding depends on an accurate emulation of all the instructions
of the block. If one of those instructions is not perfectly supported, it is shown
as is in the C listing, using an inline assembly construction. This will generally
indicate incorrect code (due to the registry dependencies), and will certainly be
fatal for the automatic refinement to come.

From the binding, the dependency sequence of a block is turned into a C ex-
pression sequence. This operation must be performed carefully: the binding rep-
resents a set of simultaneous affectations, which must be rewritten as a sequence
of affectations; great care must be taken with inter-expression dependency. This
may prompt the use of temporary variables.

Then the last instruction of the block is inspected to discover the mechanism
that should be used to translate the original control flow transition: subfunction
call, use of a goto. . .

In the case of the subfunction call, the decompilation process is recursive, so
at this point we should already know the subfunction prototype and ABI3. The
value used for the arguments are formatted in accordance with the C standard.
Conditional jumps are translated to if () goto.

All of those C expressions are stored in the body of a C function, which holds
the translation of all the code that is accessible from the chosen entrypoint.

This limitation is needed (the C standard forbids expressions in the global
scope), but it may also be misleading: a C function is supposed to have a for-
matted behaviour (stack pointer conservation. . .) that may not correspond to
the underlying assembly code. Further work will be needed to detect those oc-
currences and show the discrepancies (maybe through the use of nonstandard C
attributes).

3 Application Binary Interface: describes how arguments are passed to the subfunction
and the like.

From now on, we won’t need to manipulate assembly code anymore. But
much work is still needed; most notably C control structure reconstruction and
variable type recovery.

Here is what the code looks like at this point (Fig. 3.1):

1 int sub_48h ()
2 {
3 register int eax;
4 register int frameptr ;
5 sub_48h :
6 *(__int8 *)(frameptr -12) = 0;
7 *(__int32 *)(frameptr -16) = *(__int32 *)(

frameptr +4);
8 eax = 8;
9

10 loc_57h :
11 eax = eax -1;
12 if (eax == 0)
13 goto loc_124h ;
14 *(__int8 *)(frameptr -12) = *(__int8 *) (*(

__int32 *)(frameptr -16));
15 sub_244h (frameptr -16);
16 goto loc_57h ;
17
18 loc_124h :
19 return eax;
20 }

The next step is to simplify the control graph, for example by fixing a useless
goto (e.g. a goto pointing to another goto). Then the code is parsed to try to
identify structures that may be translated to standard if and while. Unused
labels are removed.

Most of the time, when working with a C compiler-generated code, gotos are
no longer visible, and we can see the code structure quite clearly.

Variable types are then inferred from existing code. The principal source for
the types is the prototype of the subfunctions which is a strong indication for
the types of the expressions used as arguments. Indirections also give us clues
on the more basic types (integers, pointers). Affectations are used to propagate
direct and indirect (pointed. . .) types.

This pass may generate conflicting types for a stack offset ; in this case one of
the types is chosen and C casts are used where needed. An antialiasing algorithm
is in development, which should solve this kind of problems.

The aliasing problem is prevalent with the registers, because they see a large
number of unrelated affectations throughout the function, and pollute the types
of related variables. Use of the union construct in the original code also leads to
the same kinds of problems.

The antialiasing algorithm will do a liveness analysis of variables, and for
each domain found a specific variable may be forked from the existing one. Each
clone has its own (correct) type found through the method explained previously.
However the code is really immature at the time of this writing.

The current prototype is somewhat x86 biased, but gives promising results.
Still, more work is needed before we can use it for code deobfuscation.

3.2 Use

From now on, we will postulate that we have a full functional decompiler.
It would allow us to use some of the existing tools that provide code optimi-

sation functionalities (LLVM4 for example). There is still one problem left: we
have a very particular optimisation criteria. It may be expressed as code under-
standability. In our point of view, speed of execution, for example, is a side effect.
Thus, it is possible that many legacy optimisation algorithms actually lead to a
more complex form of the code, that will be more difficult to understand.

It is very likely that the same techniques we have used at the assembly level
will work fine at a higher level; furthermore optimisation could even be done
with an intra-procedural or inter-procedural scope.

If we manage to integrate the previously discussed contextualisation mecha-
nism into the decompilation stage, the bytecode of some virtual machines (like
the one studied in the first part of this paper) may directly be decompiled. This
prospect seems promising and will be investigated in the future.

Taking into consideration the great simplicity of the virtual machine’s han-
dlers, it may also be possible to directly emulate some parts of them once trans-
lated in C, and then to proceed to the contextualisation step.

Currently, these are only perspectives but they seem quite realistic.

4 Pastoral concolic execution

As a conclusion to this paper, we would like to introduce another possible exten-
sion of our works. In this part, we will not focus on the result at all, but on the
analysis approach and the use of a Metasm. Here is the context of this study: we
analyse a protected binary, we know that the many virtual machines are used
but we are not able to get or to simulate their whole initialisation (their context
is too large, the code is heavily obfuscated, etc.). Still, how can we proceed in
order to get a discerning view of the protection workings ?

The approach we propose here is said to be concolic. This adjective, com-
monly used in software testing, points out an approach which couples a real
execution with a symbolic execution of a program. That is exactly what we will
do, using a part of dynamic analysis (thanks to a debugger) and a part of static
analysis (as we have already largely discussed in the paper).

4 http://llvm.org/

4.1 Dynamic analysis

Metasm proposes a wrapper (very basic in its current version) on the standard
Microsoft Windows debug API. We are interested by the analysis of the virtual
machine, logically we will break at the entry point of this virtual machine. Then
we will proceed to some static analysis.

1 def debugloop
2 debugevent = debugevent_alloc
3 while not @mem. empty ?
4 if WinAPI . waitfordebugevent (debugevent , 500)
5 debugloop_step (debugevent)
6 else
7 load ’starter .rb ’
8 end
9 end

10 end
11 end
12
13 def handler_newthread (pid , tid , info)
14 super
15 puts " Setting break on vm entry \n\n"
16 set_hbp (@vm_entry , pid , tid)
17 WinAPI :: DBG_CONTINUE
18 end
19
20 def handler_exception (pid , tid , info)
21 case info.code
22 when Metasm :: WinAPI :: STATUS_SINGLE_STEP
23 case get_context (pid , tid)[: eip]
24 when @vm_entry
25 puts "\n ###### BREAK ON VM ENTRY ######\ n"
26
27 ctx = get_context (pid , tid)
28 remote_mem = OS. current . findprocess (pid).mem
29
30 sa = Static_analyzer .new(remote_mem , ctx [: esp])
31 sa. followHandlers
32
33 update_eip ()
34 end
35 end
36 super
37 WinAPI :: DBG_CONTINUE
38 end

Fig. 21. Mixing the debugger with the static analysis.

A code skeleton is included in figure 21. A few functions like update_eip,
are not detailled here for the sake of simplicity and conciseness, but they are
very basic and typical.

The fundamental component is located in lines 26 and 27. The variable ctx
actually is the context of the debugged process, we can then access the value of
each of the registers of the current thread. The variable remote_mem allow us

to get access to the whole process memory. These two elements will be injected
into the static analysis to increase its discernment.

4.2 Definition of a virtual processor

A quick and dirty dynamic analysis of the virtual machine reveals many inter-
esting elements: different keys are used to decrypt the opcodes, there is a set
of flags, etc. We know where these elements are located in memory and how
they are accessed. Actually, we are able to describe the symbolic binding of the
virtual machine (fig. 22).

#------------------------ VM symbolic bindings ------------------------#
@symbolic_binding = {

Indirection[Expression[:esp, :+, 0x10], 4, nil] => Expression[:key_a],
Indirection[Expression[:esp, :+, 0x14], 4, nil] => Expression[:key_b],
Indirection[Expression[:esp, :+, 0x18], 4, nil] => Expression[:key_c],

Indirection[Expression[:esp, :+, 0x58], 4, nil] => Expression[:delta],
Indirection[Expression[:esp, :+, 0x5c], 4, nil] => Expression[:delta_false],
Indirection[Expression[:esp, :+, 0x60], 4, nil] => Expression[:delta_true],

Indirection[Expression[:esp, :+, 0x134], 1, nil] => Expression[:flag8],
Indirection[Expression[:esp, :+, 0x135], 1, nil] => Expression[:flag7],
Indirection[Expression[:esp, :+, 0x136], 1, nil] => Expression[:flag6],
Indirection[Expression[:esp, :+, 0x137], 1, nil] => Expression[:flag5],
Indirection[Expression[:esp, :+, 0x138], 1, nil] => Expression[:flag4],
Indirection[Expression[:esp, :+, 0x139], 1, nil] => Expression[:flag3],
Indirection[Expression[:esp, :+, 0x13a], 1, nil] => Expression[:flag2],
Indirection[Expression[:esp, :+, 0x13b], 1, nil] => Expression[:flag1],

Indirection[Expression[:esp, :+, 0x13c], 4, nil] => Expression[:nrHandler],
}
#------------------------ VM symbolic bindings ------------------------#

Fig. 22. Symbolic binding definition.

As an example, the first line of the hash structure means that at the location
pointed by dword ptr [esp+10h], we find the symbol key_a. We then define
the memory mapping of each of the relevant symbols.

4.3 Simplified symbolic execution

We now want to proceed to the symbolic execution of the bytecode on the vir-
tual processor. Keep in mind that we made the hypothesis that we were not able
to precisely analyse the virtual machine initialisation. How can we initialise the

context of the virtual processor?

Actually, there is no need for that. We already have all the information
required in the context and memory of the debugged process: we only need to
read this memory. We have developed a small method that fits in the hand
(fig. 23).

def vm_ctx_init()
vmctx = {}
@symbolic_binding.each_value{ |key|

vmctx[key.reduce_rec] = solve_ind_partial(
@symbolic_binding.dup.invert[Expression[key.reduce_rec]],
true

)
}
vmctx

end

Fig. 23. Virtual processor automatic initialization.

A result of a call to vm_ctx_init can be seen in figure 24.

1 delta := 250210 h
2 delta_false := 0
3 delta_true := 25 d568h
4 flag1 := 74h
5 flag2 := 35h
6 flag3 := 43h
7 flag4 := 7eh
8 flag5 := 60h
9 flag6 := 5fh

10 flag7 := 25h
11 flag8 := 0
12 key_a := 110h
13 key_b := 2
14 key_c := 2595 a8h
15 nHandler := 0ce3h

Fig. 24. Fully initialized virtual context.

A numeric value has been associated with each symbol. The solve_ind_partial
method has already been presented. It was initially able to solve indirections
pointing to the program’s memory (present in its code or data sections). We
have extended its functionality to consider the whole process memory. Using the
virtual context, we are now able to proceed to the symbolic execution of the
bytecode.

4.4 Symbolism injection

Here is the code of a virtual machine handler (fig 25).

1 412 eb3h mov esi , dword ptr [esp +14h]
2 412 eb7h mov ecx , dword ptr [esp +18h]
3 412 ebbh mov ebx , dword ptr [esp +10h]
4 412 ebfh mov eax , dword ptr [436000 h+4* esi]
5 412 ec6h mov edi , dword ptr [436000 h+4* ecx]
6 412 ecdh mov edx , dword ptr [436000 h+4* ebx]
7 412 ed4h mov ebp , dword ptr [436004 h+4* ecx]
8 412 edbh xor eax , edi
9 412 eddh mov edi , dword ptr [esp +10h]

10 412 ee1h xor eax , edx
11 412 ee3h mov ebx , dword ptr [esp +140h+4* eax]
12 412 eeah mov eax , dword ptr [436004 h+4* esi]
13 412 ef1h mov edx , dword ptr [436004 h+4* edi]
14 412 ef8h mov esi , dword ptr [esp +14h]
15 412 efch xor eax , ebp
16 412 efeh xor eax , edx
17 412 f00h mov ebp , dword ptr [esp +10h]
18 412 f04h mov edx , dword ptr [esp +140h+4* eax]
19 412 f0bh mov eax , dword ptr [436008 h+4* esi]
20 412 f12h mov esi , dword ptr [esp +18h]
21 412 f16h mov edi , dword ptr [436008 h+4* ebp]
22 412 f1dh mov ecx , dword ptr [436008 h+4* esi]
23 412 f24h xor eax , ecx
24 412 f26h xor eax , edi
25 412 f28h mov ecx , dword ptr [esp +140h+4* eax]
26 412 f2fh mov edi , dword ptr [esp +10h]
27 412 f33h movzx eax , byte ptr [edx]
28 412 f36h mov edx , dword ptr [43600 ch +4* edi]
29 412 f3dh test al , al
30 412 f3fh mov byte ptr [ebx], al
31 412 f41h mov eax , dword ptr [esp +14h]
32 412 f45h setz byte ptr [ecx]
33 412 f48h mov ecx , dword ptr [43600 ch +4* esi]
34 412 f4fh add edi , 4
35 412 f52h mov dword ptr [esp +10h], edi
36 412 f56h mov ebp , dword ptr [43600 ch +4* eax]
37 412 f5dh add esi , 4
38 412 f60h mov dword ptr [esp +18h], esi
39 412 f64h add eax , 4
40 412 f67h mov dword ptr [esp +14h], eax
41 412 f6bh xor ecx , ebp
42 412 f6dh xor ecx , edx
43 412 f6fh mov dword ptr [esp +13 ch], ecx
44 412 f76h jmp loc_401f20h

Fig. 25. A handler’s code.

We compute the binding of this piece of code. Keep in mind that Metasm
kindly offers a method for this to be performed automatically. In this particular
case, we are only interested in the memory writings. The ugly result is exhibited
in figure 26.

byte ptr [dword ptr [esp+4*(dword ptr [4*dword ptr [esp+14h]+436000h]^
(dword ptr [4*dword ptr [esp+18h]+436000h] ^dword ptr [4*dword
ptr [esp+10h]+436000h]))+140h]] := (byte ptr [dword ptr [esp+4*(dword ptr
[4*dword ptr [esp+14h]+436004h]^(dword ptr [4*dword ptr [esp+18h]+436004h]^dword
ptr [4*dword ptr [esp+10h]+436004h]))+140h]]&0ffh)

byte ptr [dword ptr [esp+4*(dword ptr [4*dword ptr [esp+14h]+436008h]^(dword ptr
[4*dword ptr [esp+18h]+436008h]^dword ptr [4*dword ptr
[esp+10h]+436008h]))+140h]] := ((byte ptr [dword ptr [esp+4*(dword ptr [4*dword
ptr [esp+14h]+436004h]^(dword ptr [4*dword ptr [esp+18h]+436004h]^dword ptr
[4*dword ptr [esp+10h]+436004h]))+140h]]&0ffh)==0)

dword ptr [esp+13ch] := (dword ptr [4*dword ptr [esp+18h]+43600ch]^(dword ptr
[4*dword ptr [esp+14h]+43600ch]^dword ptr [4*dword ptr [esp+10h]+43600ch]))

dword ptr [esp+10h] := dword ptr [esp+10h]+4
dword ptr [esp+14h] := dword ptr [esp+14h]+4
dword ptr [esp+18h] := dword ptr [esp+18h]+4

Fig. 26. Handler’s raw binding.

Well, it still is not easy to understand what happens here. But wait, in this
listing there are many elements we know. For example, we know that the symbol
key_a is hiding behind the indirection dword ptr [esp+10h].

Once again, the solution is quite trivial: we have to inject the symbolic bind-
ing into the handler’s binding. In Ruby, we will simply write:

1 expression .bind(@symbolic_binding)

We then get the following intermediate result (fig. 27).

byte ptr [dword ptr [esp+4*(dword ptr [4*key_b+436000h]^(dword
ptr [4*key_c+436000h]^dword ptr [4*key_a+436000h]))+140h]] := byte ptr [dword
ptr [esp+4*(dword ptr [4*key_b+436004h]^(dword ptr [4*key_c+436004h]^dword
ptr [4*key_a+436004h]))+140h]]&0ffh

byte ptr [dword ptr [esp+4*(dword ptr [4*key_b+436008h]^(dword
ptr [4*key_c+436008h]^dword ptr [4*key_a+436008h]))+140h]] := (byte ptr
[dword ptr [esp+4*(dword ptr [4*key_b+436004h]^(dword ptr
[4*key_c+436004h]^dword ptr [4*key_a+436004h]))+140h]]&0ffh)==0

key_a := key_a+4
key_b := key_b+4
key_c := key_c+4

nHandler := dword ptr [4*key_c+43600ch]^(dword ptr [4*key_b+43600ch]^dword
ptr [4*key_a+43600ch])

Fig. 27. Intermediate binding.

This result is encouraging, we now have to apply the solve_ind_partial
method to each of the intermediate expressions. Here is an extract from the
verbose log of this method (fig. 28):

- solve read access to arg: (dword ptr [4371ech]^(dword ptr [437888h]^dword ptr
[43b780h]))&0ffffffffh
- solved key: 184dh

- solve write access to arg: byte ptr [dword ptr [esp+4*(dword ptr
[4*key_b+436000h]^(dword ptr [4*key_c+436000h]^dword ptr
[4*key_a+436000h]))+140h]]
- make stack variable <esp+136h> from stack address 23e9a6h
- solved key: flag6

- solve read access to arg: byte ptr [dword ptr [esp+4*(dword ptr
[437880h]^(dword ptr [4371e4h]^dword ptr [43b778h]))+140h]]&0ffh
- solved key: flag5&0ffh

- solve write access to arg: byte ptr [dword ptr [esp+4*(dword ptr
[4*key_b+436008h]^(dword ptr [4*key_c+436008h]^dword ptr
[4*key_a+436008h]))+140h]]
- make stack variable <esp+135h> from stack address 23e9a5h
- solved key: flag7

- solve read access to arg: ((byte ptr [dword ptr [esp+4*(dword ptr
[437880h]^(dword ptr [4371e4h]^dword ptr [43b778h]))+140h]]&0ffh)==0)&0ffffffffh
- solved key: ((flag5&0ffh)==0)&0ffffffffh

Fig. 28. solve_ind_partial method trace.

The symbolic elements are progressively injected. Indirections are solved,
sometime until a numerical value is obtained. As a side effect, memory aliasing
(several pointers on the same memory area) is de facto defeated. Numerical
values (addresses) are converted into their symbolic equivalents, when possible.
The final result (fig. 29) is quite clear and understandable.

flag6 := flag5&0ffh
flag7 := ((flag5&0ffh)==0)&0ffffffffh
key_a := 15e1h
key_b := 623h
key_c := 47ch
nHandler := 184dh

Fig. 29. Final binding.

4.5 The Beauty of Gesture

In this section, we wanted to illustrate a concolic approach on a virtual machine-
based software protection. Results are quite encouraging and sometimes offer
amazing shortcuts. We make use of the information from both code and runtime
memory. We liberate ourselves from some constraints and limitations due to pure
static analysis. Doing so, we greatly simplify virtual machine handler analysis. A
key issue is to decide when to solve expression to its numerical value and when to
stay in symbolic representation. In this example, we are able to hook every call

to the virtual machine, to proceed to the symbolic execution of the bytecode, to
update both the context and the memory of the process and then return to the
original code. Once again we are close to compilation concepts. What we do is
a kind of just-in-time compilation of the bytecode to our own interpreter.

5 Conclusion

Compared to our previous works which we presented last year[1], we have stepped
further into the automation of obfuscating and virtual machine based protections
code analysis. Optimisations used in the first part of this paper are generic and
quite simple. Our implementation is really basic and we miss a strong intermedi-
ate representation that would be able to support higher level optimisations (like
REIL[17] for example). We have been working towards decompilation. It should
allow us to reach a greater level of genericness.

Another step has also been taken by using the semantics of instructions. The
use of bindings once again reveals itself to be quite powerfull. We have defeated
a virtual machine without even analysing its handlers. Still, the extraction of
the interpreter’s semantics allowed us to generate a compiler from bytecode to
native x86 assembly. This kind of approach may have been used as a preparatory
phase for a malicious code detection engine[11].

We should also note that our work relies on the hypothesis that we are able to
disassemble most of the code we study. Some techniques, like memory aliasing,
may try to exploit current limitations of the backtracking engine and emulation
abilities of the framework to disrupt the recovery of the control flow.

In order to be resilient to such kinds of threats, the third part (dealing with
a concolic approach) is very promising. It allows the analyst to get complete
control over all the elements. This ability, combined with the manipulation of
symbolic elements, leads to more fun and powerful code analysis sessions.

References

[1] Guillot, Y., Gazet, A.: Semi-automatic binary protection tampering. Journal in
Computer Virology Volume 5, issue 2, pp 119–150

[2] Guillot, Y.: Metasm. In: 5ème Symposium sur la Sécurité des Technologies de
l’Information et des Communicatins (SSTIC’07). (2007)

[3] Tip, F.: A survey of program slicing techniques. Journal of Programming Lan-
guages 3 (1995) 121–189

[4] Wroblewski, G.: General method of program code. obfuscation (2002)
[5] Beck, J., Eichmann, D.: Program and interface slicing for reverse engineering.

In: In IEEE/ACM 15 th Conference on Software Engineering (ICSE’93), IEEE
Computer Society Press (1993) 509–518

[6] Quist, D., Valsmith: Covert debugging - circumventing software armoring tech-
niques. In: BlackHat USA. (2007)

[7] Bohne, L.: Pandora’s Bochs: Automated Malware Unpacking. PhD thesis, Uni-
versity of Mannheim - Laboratory for Dependable Distributed Systems (2008)

[8] Kang, M.G., Poosankam, P., Yin, H.: Renovo: A hidden code extractor for packed
executables. In: 5th ACM Workshop on Recurring Malcode (WORM’07). (2007)

[9] Perriot, F.: Defeating polymorphism through code optimization. In: Virus Bul-
letin. (2003)

[10] Webster, M., Malcolm, G.: Detection of metamorphic and virtualization-based
malware using algebraic specification. In: EICAR. (2008)

[11] Christodorescu, M., Kinder, J., Jha, S., Katzenbeisser, S., Veith, H.: Malware nor-
malization. Technical Report 1539, University of Wisconsin, Madison, Wisconsin,
USA (nov 2005)

[12] http://orange-bat.com: http://orange-bat.com
[13] Futamura, Y.: Partial evaluation of computation process - an approach to a

compiler-compiler. Systems, Computers, Controls 2 (1971) 45–50
[14] Rolles, R.: Optimizing and compiling (2008)
[15] Marlet, R.: Vers une formalisation de l’évaluation partielle. PhD the-

sis, L’Université de Nice - Sophia Antipolis, École Doctorale - Sciences pour
l’Ingénieur (1994)

[16] Hartmann, L., Jones, N.D., Simonsen, J.G.: Interpretive overhead and opti-
mal specialisation. In: International Workshop on Metacomputation in Russia,
Meta2008. (2008) 1–12

[17] Dullien, T., Porst, S.: Reil: A platform-independent intermediate representation
of disassembled code for static code analysis. In: CanSecWest. (2009)

