
Windows HIPS evaluation with Slipfest

Julien Tinnes, Yoann Guillot

France Telecom R&D



Research & Development CanSecWest 2006 – SLIPFEST

(Unrestricted)
March 28, 2006

Definition SLIPFEST Windows HIPS HIPS: NOEXEC HIPS: ASLR HIPS: MAC DEMO Conclusion

What is a HIPS?

Host intrusion prevention system

Tries to generically prevent the exploitation of security flaws

Tries to mitigate their consequences

State of the art on Linux with PaX (and GrSecurity)

Emulates non-executable pages semantic using splitted TLBs
or segmentation (when not supported in hardware)

Prevents the injection of arbitrary code in the address space
using this semantic

Prevents reusing of existing code by an exploit with address
space layout randomization (ASLR)

Restricts the privileges of a process with mandatory access con-
trol (GrSecurity)



Research & Development CanSecWest 2006 – SLIPFEST

(Unrestricted)
March 28, 2006

Definition SLIPFEST Windows HIPS HIPS: NOEXEC HIPS: ASLR HIPS: MAC DEMO Conclusion

What is Slipfest (SF)?

A tool developped by France Telecom R&D to help the evaluation
of Windows HIPS products

The name is basically a french joke meaning "Panty’s party"

Officially it’s an acronym for "System-Level Intrusion Prevention
Framework Evaluation Suite and Toolkit"

Who would believe that? :)

It can be used to:

understand how your HIPS works

see its limitations



Research & Development CanSecWest 2006 – SLIPFEST

(Unrestricted)
March 28, 2006

Definition SLIPFEST Windows HIPS HIPS: NOEXEC HIPS: ASLR HIPS: MAC DEMO Conclusion

Windows HIPS

There are a lot of products

Some big companies bought a smaller one for their HIPS product

Cisco CSA, McAfee Entercept, Symantec client security . . .

Wehntrust, Ozone, Eeye Blink, Ossurance, Prevx, Geswall, Buffer-
Shield, NGSEC’s StackDefender . . .

Windows XP SP2 and Vista include HIPS-like features

Features

Prevents shellcode execution (NOEXEC)

Address space layout randomization (ASLR)

Mandatory access control (MAC)



Research & Development CanSecWest 2006 – SLIPFEST

(Unrestricted)
March 28, 2006

Definition SLIPFEST Windows HIPS HIPS: NOEXEC HIPS: ASLR HIPS: MAC DEMO Conclusion

NOEXEC, technique #1, NX emulation

Some products are doing PaX-like NX emulation using pentium’s
splitted TLBs

They are rare and quite hackish

Significant impact on performances (most people use segmen-
tation instead in PaX)

SecureStack, BufferShield, StackDefender

If supported by the processor, XP SP2 uses NX, but not at its
full potential

Slipfest can test whether a non-executable semantic is present



Research & Development CanSecWest 2006 – SLIPFEST

(Unrestricted)
March 28, 2006

Definition SLIPFEST Windows HIPS HIPS: NOEXEC HIPS: ASLR HIPS: MAC DEMO Conclusion

NOEXEC, technique #2, behavioral analysis

Instead of relying on non-executability:

Most products will let you run your shellcode

But they’ll try to catch you when you call an API

Some vendors call this "behavioral analysis"

You can get arbitrary code execution

They use SDT or userland (in libraries) hooks

When a hook catches you, the HIPS runs a heuristic

If something seems wrong (e.g. you’re returning to the stack)
it kills your process
If everything seems fine, it lets you run



It’s a bad solution



Research & Development CanSecWest 2006 – SLIPFEST

(Unrestricted)
March 28, 2006

Definition SLIPFEST Windows HIPS HIPS: NOEXEC HIPS: ASLR HIPS: MAC DEMO Conclusion

Behavioral analysis is by essence very weak

When you’ve got arbitrary code execution all bets are off

You can do whatever the process can do

The only real remaining line of defense is privilege limitation
(e.g. with MAC)

You can bypass kernel and library based BA:

Fool the heuristic: make it think you’re the legitimate program

Additional techniques for library-based BA:

CPL-3 code is not more privileged than you are, you can emulate
the hooked library

You can "jump above" the hook or even unhook it (depends on
MAC)



Research & Development CanSecWest 2006 – SLIPFEST

(Unrestricted)
March 28, 2006

Definition SLIPFEST Windows HIPS HIPS: NOEXEC HIPS: ASLR HIPS: MAC DEMO Conclusion

SLIPFEST against behavioral analysis

You can use Slipfest to find out what is hooked

List hooks in SDT, and see which module they are pointing to

List hooks in Libraries, and see where they’re pointing to (SF
resolves calls and jumps)

You can unhook libraries

This allows to easily find out if the interesting hook is in the
SDT or in a library

You can use Slipfest to find out how smart the heuristic is

Inject different shellcodes in the process

The shellcodes will try to fool the heuristic by proxying through
existing code



Research & Development CanSecWest 2006 – SLIPFEST

(Unrestricted)
March 28, 2006

Definition SLIPFEST Windows HIPS HIPS: NOEXEC HIPS: ASLR HIPS: MAC DEMO Conclusion

HIPS Internals, ASLR

Some products implement some address space layout randomiza-
tion

ASLR makes it harder for your exploit to rely on fixed addresses

Wehnus Wehntrust, Ozone, Eeye Blink . . .

Windows XP SP2 and Vista add some randomization (TEB,
stack, heap)

Slipfest can tell you what is randomized and how much it is random-
ized

Creates a bunch of processes reporting back through a pipe



Research & Development CanSecWest 2006 – SLIPFEST

(Unrestricted)
March 28, 2006

Definition SLIPFEST Windows HIPS HIPS: NOEXEC HIPS: ASLR HIPS: MAC DEMO Conclusion

HIPS Internals, mandatory access control

Mitigates the consequences of an exploitation by making a process
less privileged

Example: shareware.exe cannot modify a file in WINDIR

You need to write a policy

It’s hard

Most of the time there is no automatic consistency checking
mecanism

For instance if you forbid a process to write to WINDIR you must
also forbid it to access the NtWriteProcessMemory service

Otherwise it could inject a shellcode in another process
which would write to WINDIR



Research & Development CanSecWest 2006 – SLIPFEST

(Unrestricted)
March 28, 2006

Definition SLIPFEST Windows HIPS HIPS: NOEXEC HIPS: ASLR HIPS: MAC DEMO Conclusion

HIPS Internals, mandatory access control (2)

Most products (if not all) have some inconsistancies that you can-
not fix, especially if the vulnerable process runs with administrator
privileges

Slipfest can test some of them: loading a driver the "other" -
undocumented - way, writing to physical memory device . . .

Access control is implemented using hooks too

Kernel hooks (the correct way)

Userland hooks (the bad way)

They can be bypassed (it’s CPL-3 code)

Slipfest can help you understand how it is implemented (see BA)



Research & Development CanSecWest 2006 – SLIPFEST

(Unrestricted)
March 28, 2006

Definition SLIPFEST Windows HIPS HIPS: NOEXEC HIPS: ASLR HIPS: MAC DEMO Conclusion

Why userland hooks are bad



Research & Development CanSecWest 2006 – SLIPFEST

(Unrestricted)
March 28, 2006

Definition SLIPFEST Windows HIPS HIPS: NOEXEC HIPS: ASLR HIPS: MAC DEMO Conclusion

Demo

ASLR detection

List SDT and userland hooks

See where they are pointing to

Shellcode generation and injection

Hash based find_proc with forwarders support

Bypass the heuristic by proxying API return through existing code

e.g. we return to an address in the PE just after a call and gain
control back with the next ’ret’



Research & Development CanSecWest 2006 – SLIPFEST

(Unrestricted)
March 28, 2006

Definition SLIPFEST Windows HIPS HIPS: NOEXEC HIPS: ASLR HIPS: MAC DEMO Conclusion

Conclusion

Future

Make the GUI actually usable (help appreciated)

Document the hidden features so that you don’t have to read the
source (almost 6000 lines) to find them

Port to Metasploit stagers some of the shellcodes and bypass
techniques (WIP)

Thanks for attending!

Any questions ?

Available in a few minutes at http://slipfest.cr0.org with a GPL li-
cence


