Windows HIPS evaluation with Slipfest

Julien Tinnes, Yoann Guillot

France Telecom R&D

(o

| Definition

What is a HIPS? &

= Host intrusion prevention system

» Tries to generically prevent the exploitation of security flaws
» Tries to mitigate their consequences

= State of the art on Linux with PaX (and GrSecurity)

» Emulates non-executable pages semantic using splitted TLBs
or segmentation (when not supported in hardware)

» Prevents the injection of arbitrary code in the address space
using this semantic

» Prevents reusing of existing code by an exploit with address
space layout randomization (ASLR)

» Restricts the privileges of a process with mandatory access con-
trol (GrSecurity)
(Unrestricted)

Research & Development CanSecWest 2006 — SLIPFEST

[SLIPFEST

What is Slipfest (SF)? &

= A tool developped by France Telecom R&D to help the evaluation
of Windows HIPS products

= The name is basically a french joke meaning "Panty’s party”

= Officially it's an acronym for "System-Level Intrusion Prevention
Framework Evaluation Suite and Toolkit"

» Who would believe that? :)
= |t can be used to:

» understand how your HIPS works
» see its limitations

(Unrestricted)
March 28, 2006

Research & Development CanSecWest 2006 — SLIPFEST

[Windows HIPS

Windows HIPS &

= There are a lot of products
= Some big companies bought a smaller one for their HIPS product
» Cisco CSA, McAfee Entercept, Symantec client security . . .

= Wehntrust, Ozone, Eeye Blink, Ossurance, Prevx, Geswall, Buffer-
Shield, NGSEC’s StackDefender. ..

= Windows XP SP2 and Vista include HIPS-like features
= Features

» Prevents shellcode execution (NOEXEC)

» Address space layout randomization (ASLR)

» Mandatory access control (MAC)

(Unrestricted)

Research & Development CanSecWest 2006 — SLIPFEST

[HIPS: NOEXEC

NOEXEC, technique #1, NX emulation &

= Some products are doing PaX-like NX emulation using pentium’s
splitted TLBs
» They are rare and quite hackish

» Significant impact on performances (most people use segmen-
tation instead in PaX)

» SecureStack, BufferShield, StackDefender

» If supported by the processor, XP SP2 uses NX, but not at its
full potential

= Slipfest can test whether a non-executable semantic is present

Research & Development CanSecWest 2006 — SLIPFEST March 28 , 2006

[HIPS: NOEXEC

NOEXEC, technique #2, behavioral analysis &

= Instead of relying on non-executability:

» Most products will let you run your shellcode
» But they’ll try to catch you when you call an API
» Some vendors call this "behavioral analysis"

= You can get arbitrary code execution

» They use SDT or userland (in libraries) hooks
> When a hook catches you, the HIPS runs a heuristic

 If something seems wrong (e.g. you're returning to the stack)
it Kills your process

* If everything seems fine, it lets you run

Research & Development CanSecWest 2006 — SLIPFEST March 28 , 2006

It's a bad solution

[HIPS: NOEXEC

Behavioral analysis is by essence very weak &

= When you've got arbitrary code execution all bets are off

» You can do whatever the process can do

» The only real remaining line of defense is privilege limitation
(e.g. with MAC)

= You can bypass kernel and library based BA:
» Fool the heuristic: make it think you're the legitimate program
= Additional techniques for library-based BA:

» CPL-3 code is not more privileged than you are, you can emulate
the hooked library

» You can "jump above" the hook or even unhook it (depends on
MAC)

Research & Development CanSecWest 2006 — SLIPFEST March 28 , 2006

[HIPS: NOEXEC

SLIPFEST against behavioral analysis &

= You can use Slipfest to find out what is hooked

» List hooks in SDT, and see which module they are pointing to

» List hooks in Libraries, and see where they're pointing to (SF
resolves calls and jumps)

» You can unhook libraries
e This allows to easily find out if the interesting hook is in the
SDT or in a library
= You can use Slipfest to find out how smart the heuristic is

» Inject different shellcodes in the process

» The shellcodes will try to fool the heuristic by proxying through
existing code

Research & Development CanSecWest 2006 — SLIPFEST March 28 , 2006

[HIPS: ASLR

HIPS Internals, ASLR &

= Some products implement some address space layout randomiza-
tion
» ASLR makes it harder for your exploit to rely on fixed addresses
» Wehnus Wehntrust, Ozone, Eeye Blink. ..
» Windows XP SP2 and Vista add some randomization (TEB,
stack, heap)

= Slipfest can tell you what is randomized and how much it is random-
1zed

» Creates a bunch of processes reporting back through a pipe

(Unrestricted)
March 28, 2006

Research & Development CanSecWest 2006 — SLIPFEST

[HIPS: MAC

HIPS Internals, mandatory access control &

= Mitigates the consequences of an exploitation by making a process
less privileged

= Example: shareware.exe cannot modify a file in WINDIR
= You need to write a policy

» |It's hard

» Most of the time there is no automatic consistency checking
mecanism

» For instance if you forbid a process to write to WINDIR you must
also forbid it to access the NtWriteProcessMemory service

e Otherwise it could inject a shellcode in another process
which would write to WINDIR

Research & Development CanSecWest 2006 — SLIPFEST March 28 , 2006

[HIPS: MAC

HIPS Internals, mandatory access control (2) &

= Most products (if not all) have some inconsistancies that you can-
not fix, especially if the vulnerable process runs with administrator
privileges

» Slipfest can test some of them: loading a driver the "other" -
undocumented - way, writing to physical memory device. ..

= Access control is implemented using hooks too

» Kernel hooks (the correct way)
» Userland hooks (the bad way)
e They can be bypassed (it's CPL-3 code)
» Slipfest can help you understand how it is implemented (see BA)

Research & Development CanSecWest 2006 — SLIPFEST March 28 , 2006

[HIPS: MAC

Why userland hooks are bad

(Unrestricted)

Research & Development CanSecWest 2006 — SLIPFEST March 28, 2006

[DEMO
Demo &

= ASLR detection
= List SDT and userland hooks
» See where they are pointing to
= Shellcode generation and injection
» Hash based find_proc with forwarders support
= Bypass the heuristic by proxying API return through existing code

» €.9. we return to an address in the PE just after a call and gain
control back with the next 'ret’

(Unrestricted)
March 28, 2006

Research & Development CanSecWest 2006 — SLIPFEST

Conclusion &

= Future

» Make the GUI actually usable (help appreciated)

» Document the hidden features so that you don’t have to read the
source (almost 6000 lines) to find them

» Port to Metasploit stagers some of the shellcodes and bypass
techniques (WIP)

= Thanks for attending!
= Any questions ?

= Available in a few minutes at http://slipfest.crO.org with a GPL li-
cence

(Unrestricted)
March 28, 2006

Research & Development CanSecWest 2006 — SLIPFEST

